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1 Set

Queistion: What is set?



Queistion: X = {5 |9 is a set} 1s a set?



1.1 Russell’s paradox
Let W={S|S ¢S}

Queistion: W € W?

Assume that W € W, then W ¢ W.
Assume that W ¢ W, then W € W.

Axioms of set is necessary



1.2 ZermeloFraenkel set theory with axiom of choice

e Axiom of extensionality: Vz(ze x < z€y) & x =Yy
e Axiom of pairing: zVu(u € z > u=xoru=1y)
e Axiom of union: dyVz(z € y & du(u € x and z € u))
e Axiom of power set AyVz(z € y < 7 C x)
e Axiom of empty set: AxVy(y € x)
e Axiom of infinity: dx[¢ € x and Vy(y € x = y N {y} € x)]
e Axiom schema of replacement:
YxVyVz(e(x,y) and p(x,2) = y = 2)
— JduV¥yly € u & dx(x € u and ¢(x,y))]
e Axiom of regularity: x # ¢ = dy(y € xand y N x # @)
e (Axiom of choice):
Vxeceulx#¢) andVx,yecu(x#y > xNy=49)
— WWxeudlt(t € xand t € v)

Queistion: Is ZFC is consistent?



1.3 Peano axioms

Because ZFC 1s too difficult, we show axioms of natural numbers called Peano
axioms.

e Any natural number x has its successor x’.

e There exist a natural number O that 1s not a successor.

o If X' =/, we have x = y.

e For any logical expression ¢(x), we have the following relation

p(0), Vx(p(x) = ¢(x) o Yxp(x)



1.4 Recursive functions

In order to define calculation on integers, the primitive recursive function 1s
defined.

e Function which provide a constant c:

f(x1,...,x) =c.
e Function which select a input variable x; (1 < i < k):
f(x1,..., X)) = X;.

e Function which provides the successor:

f(x) =x".
e Compound function: Assume that f(xy, ..., Xg), 81(X11>-- > X1p)s- - -, and,
gr(Xk1s-- -, xknk) are primitive recursive functions,

J@1x11s s X1y o s (X1 - - 5 Xkny))-
e Function defined recursively: Assume that g(xo, ..., xz), (X, y1,..., V%)



are primitive recursive functions.
O, x0,...,x) = g(x0,...,Xz)
fO x0, . o xk) = h(F(x, X2, ..., XE), X, X2, o o, XE)
Example: For g(x) = x, h(x) = x’

plus(0,y) = g (=y)
plus(x’,y) = h(plus(x,y))(= plus(x,y))

Hint: Prove plus(0, y') = plus(0, y)’, plus(x, y") = plus(x, y)’, and plus(x, y') =
plus(y’, x).

Recursive function f(xy,...,xz): t = f(xq,...,x): 1s defined as the min-
imum ¢ such that g(xy,...,x;,t) = 0 with a primitive recursive function

g(x1, ..., X, 1),

Calculation



2 Incompleteness theorems

2.1 First and second Incompleteness theorems

Assume that 7' 1s a recursive and formal theory
(i) If T is consistent, there exists a sentence G in 7 such that we cannot
prove either G or —G.
(ii) If 7' is consistent, the consistence of 7" cannot proven.

e —G: the negation of G.
e (5 1s called
e (G can be realized.



2.2 Godel’s sentence

e We can map a natural number to every sentence. Thus there 1s one to one
mapping between a sentence and a natural number.

e For example, if we express a sentence by character codes, it 1s a huge
binary number.

e For a sentence A, the corresponding natural number 1s described by [A]
and called the Godel’s number of A.

e Let Bew([A]) be a logical expression such that A can be proven.

e Since we can give a natural number to a proof, “There 1s a proof” 1s equiv-
alent to “There 1s a natural number with a condition”.

e Since

, we can know whether a proof exists or not by a recursive

function.

e Proofs can be handled 1n the natural number theory.

e Let Sub(n, m) be the Godel’s number of a logical expression such that a
natural number 7 1s substituted into a free variable of a logical expression
of Godel’s number m, This 1s a func-
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tion from two integers to a integer and realized by a primitive recursive
function.

e A logical expression R(n) is defined by -Bew(Sub(n, n)).

e The Godel’s sentence G 1s defined by R([R(n)]).

e In [R(n)], a Godel’s number as a free variable 1s assigned to n.

e We have the following equivalency:

(1)

e This Sub([R(n)],[R(n)])) 1s given by the Godel’s number of the logical
expression when we substitute the Godel’s number of R(n) into n in R(n).
Therefore 1t 1s the Godel’s number of R([R(n)]) or G. (Note that [R(n)] 1s
a natural number.)

e Then, we have the following equivalency:

G & —-Bew([G]) (2)

This means if G is true, we cannot prove G, and if G is not true, we can
prove.
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2.3 Consistence

Definition Theory 7 is consistent:
There 1s no case such that for a logical expres-
sions A.

e If a theory T 1s not consistent, we can prove A A —A for a logical expression
A.
e For any logical expression B, from a logic theory we have

-B — AV —A(= true).
e By considering its contraposition, we have

3)

e Since A A —A can be proven,
e Therefore, not consistent theory can not use at all.
e Con(T') denotes that a theory 7' is consistent.
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3 Outline of proof of Godel’s first incompleteness theorem

e If G can be proven, G becomes true and G cannot be proven. This contra-
dicts to that G can be proven.

e If =G can be proven, we can prove Bew([G1]). Then, Bew([G]) is true and
G can be proven. Because G and -G can be proven, This contradicts the
consistence of the theory.

4 Outline of proof of Godel’s second incompleteness theorem
Let’s describe formally what we proved for the first theorem:

Con(T) — —Bew([G))
Con(7T) — —Bew([-G])

If we can prove Con(7') formally, we can prove —Bew([G 1) and can prove G.
This contradicts to the first theorem.
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5 Conclusion

e Diagonal method 1s used.

e The concept ‘calculation’ that 1s very important in computer was born to
discuss theories and proofs strictly.

e In order to show there 1s no proof, we have to define procedure or algo-
rithm.

e For the purpose,the recursive function and the Turing machine are defined,
and computers are invented.

e Anyway I feel uneasy since we cannot prove the consistence of present
theories of mathematics.
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Proof of plus(x,y) = plus(y, x).
1. We will prove plus(x, 0) = plus(0, x) for any x by mathematical induction
with respect to x. When x = 0, we have

plus(0, 0) = plus(0, 0).
Assume that plus(x, 0) = plus(0, x), we have
plus(x’,0) = (plus(x, 0))” = (plus(0, x))" = x" = plus(0, x").

2. We will prove plus(x,y”) = plus(x,y)” for any x and y by mathematical
induction with respect to x. When x = 0, we have for any y

plus(0,y") = y" = plus(0, y)’
Assume that plus(x, y") = plus(x, y)” for any y, we have
plus(x’,y") = plus(x, y")" = (plus(x, y)")" = plus(x’, y)’
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3. Now will will prove plus(x, y) = plus(y, x) for any x and y by mathematical
induction with respect to y. 1. yields

plus(x, 0) = plus(0, x).
Assume that plus(x, y) = plus(y, x) for any x, we have from 2.

plus(x,y”) = (plus(x,y))" = (plus(y, x))" = plus(y’, x).
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