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1 Set

Queistion: What is set?
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Queistion: X = {S | S is a set} is a set?
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1.1 Russell’s paradox
Let W = {S | S < S }.

Queistion: W ∈ W?

Assume that W ∈ W, then W < W.
Assume that W < W, then W ∈ W.

Axioms of set is necessary
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1.2 ZermeloFraenkel set theory with axiom of choice
• Axiom of extensionality: ∀z(z ∈ x↔ z ∈ y)↔ x = y
• Axiom of pairing: ∃z∀u(u ∈ z↔ u = x or u = y)
• Axiom of union: ∃y∀z(z ∈ y↔ ∃u(u ∈ x and z ∈ u))
• Axiom of power set ∃y∀z(z ∈ y↔ z ⊂ x)
• Axiom of empty set: ∃x∀y(y < x)
• Axiom of infinity: ∃x[φ ∈ x and ∀y(y ∈ x→ y ∩ {y} ∈ x)]
• Axiom schema of replacement:
∀x∀y∀z(ϕ(x, y) and ϕ(x, z)→ y = z)
→ ∃u∀y[y ∈ u↔ ∃x(x ∈ u and ϕ(x, y))]
• Axiom of regularity: x , φ→ ∃y(y ∈ x and y ∩ x , φ)
• (Axiom of choice):
∀x ∈ u(x , φ) and ∀x, y ∈ u(x , y→ x ∩ y = φ)
→ ∃v∀x ∈ u∃!t(t ∈ x and t ∈ v)

We can discuss almost all mathematical issues.
Queistion: Is ZFC is consistent?
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1.3 Peano axioms
Because ZFC is too difficult, we show axioms of natural numbers called Peano
axioms.

• Any natural number x has its successor x′.
• There exist a natural number 0 that is not a successor.
• If x′ = y′, we have x = y.
• For any logical expression ϕ(x), we have the following relation

ϕ(0),∀x(ϕ(x)→ ϕ(x′)) ↔ ∀xϕ(x)

(Mathematical induction).
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1.4 Recursive functions
In order to define calculation on integers, the primitive recursive function is
defined.

• Function which provide a constant c:

f (x1, . . . , xk) = c.

• Function which select a input variable xi (1 ≤ i ≤ k):

f (x1, . . . , xk) = xi.

• Function which provides the successor:

f (x) = x′.

• Compound function: Assume that f (x1, . . . , xk), g1(x11, . . . , x1n1),. . . , and,
gk(xk1, . . . , xknk) are primitive recursive functions,

f (g1(x11, . . . , x1n1), . . . , gk(xk1, . . . , xknk)).

• Function defined recursively: Assume that g(x2, . . . , xk), h(x, y1, . . . , yk)
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are primitive recursive functions.

f (0, x2, . . . , xk) = g(x2, . . . , xk)
f (x′, x2, . . . , xk) = h( f (x, x2, . . . , xk), x, x2, . . . , xk)

Example: For g(x) = x, h(x) = x′

plus(0, y) = g(y)(= y)
plus(x′, y) = h(plus(x, y))(= plus(x, y)′)

Question: What is plus(x, y).
Let’s prove plus(x, y) = plus(y, x) by using Peano axioms.
Hint: Prove plus(0, y′) = plus(0, y)′, plus(x, y′) = plus(x, y)′, and plus(x, y′) =

plus(y′, x).

Recursive function f (x1, . . . , xk): t = f (x1, . . . , xk): is defined as the min-
imum t such that g(x1, . . . , xk, t) = 0 with a primitive recursive function
g(x1, . . . , xk, t),

Calculation is defined as a function realized by a recursive function.
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2 Incompleteness theorems
2.1 First and second Incompleteness theorems
Assume that T is a recursive and formal theory including natural numbers.

(i) If T is consistent, there exists a sentence G in T such that we cannot
prove either G or ¬G.
(ii) If T is consistent, the consistence of T cannot proven.

• ¬G: the negation of G.
•G is called Gödel’s sentence.
•G can be realized.
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2.2 Gödel’s sentence
•We can map a natural number to every sentence. Thus there is one to one

mapping between a sentence and a natural number.
• For example, if we express a sentence by character codes, it is a huge

binary number.
• For a sentence A, the corresponding natural number is described by dAe

and called the Gödel’s number of A.
• Let Bew(dAe) be a logical expression such that A can be proven.
• Since we can give a natural number to a proof, “There is a proof” is equiv-

alent to “There is a natural number with a condition”.
• Since a primitive recursive function can check whether a number is a

proof or not, we can know whether a proof exists or not by a recursive
function.
• Proofs can be handled in the natural number theory.
• Let Sub(n,m) be the Gödel’s number of a logical expression such that a

natural number n is substituted into a free variable of a logical expression
of Gödel’s number m, which has only one free variable. This is a func-
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tion from two integers to a integer and realized by a primitive recursive
function.
• A logical expression R(n) is defined by ¬Bew(Sub(n, n)).
• The Gödel’s sentence G is defined by R(dR(n)e).
• In dR(n)e, a Gödel’s number as a free variable is assigned to n.
•We have the following equivalency:

G ↔ ¬Bew(Sub(dR(n)e, dR(n)e)) (1)

• This Sub(dR(n)e, dR(n)e)) is given by the Gödel’s number of the logical
expression when we substitute the Gödel’s number of R(n) into n in R(n).
Therefore it is the Gödel’s number of R(dR(n)e) or G. (Note that dR(n)e is
a natural number.)
• Then, we have the following equivalency:

G ↔ ¬Bew(dGe) (2)

This means if G is true, we cannot prove G, and if G is not true, we can
prove.
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2.3 Consistence
Definition Theory T is consistent:

There is no case such that both A and ¬A are proven for a logical expres-
sions A.

• If a theory T is not consistent, we can prove A∧¬A for a logical expression
A.
• For any logical expression B, from a logic theory we have

¬B→ A ∨ ¬A(= true).

• By considering its contraposition, we have

A ∧ ¬A→ B. (3)

• Since A ∧ ¬A can be proven, any logical expression B is proven.
• Therefore, not consistent theory can not use at all.
• Con(T ) denotes that a theory T is consistent.
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3 Outline of proof of Gödel’s first incompleteness theorem
• If G can be proven, G becomes true and G cannot be proven. This contra-

dicts to that G can be proven.

• If ¬G can be proven, we can prove Bew(dGe). Then, Bew(dGe) is true and
G can be proven. Because G and ¬G can be proven, This contradicts the
consistence of the theory.

4 Outline of proof of Gödel’s second incompleteness theorem
Let’s describe formally what we proved for the first theorem:

Con(T ) → ¬Bew(dGe)
Con(T ) → ¬Bew(d¬Ge)

If we can prove Con(T ) formally, we can prove ¬Bew(dGe) and can prove G.
This contradicts to the first theorem.
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5 Conclusion
• Diagonal method is used.
• The concept ‘calculation’ that is very important in computer was born to

discuss theories and proofs strictly.
• In order to show there is no proof, we have to define procedure or algo-

rithm.
• For the purpose,the recursive function and the Turing machine are defined,

and computers are invented.
• Anyway I feel uneasy since we cannot prove the consistence of present

theories of mathematics.
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Proof of plus(x, y) = plus(y, x).
1. We will prove plus(x, 0) = plus(0, x) for any x by mathematical induction
with respect to x. When x = 0, we have

plus(0, 0) = plus(0, 0).

Assume that plus(x, 0) = plus(0, x), we have

plus(x′, 0) = (plus(x, 0))′ = (plus(0, x))′ = x′ = plus(0, x′).

2. We will prove plus(x, y′) = plus(x, y)′ for any x and y by mathematical
induction with respect to x. When x = 0, we have for any y

plus(0, y′) = y′ = plus(0, y)′

Assume that plus(x, y′) = plus(x, y)′ for any y, we have

plus(x′, y′) = plus(x, y′)′ = (plus(x, y)′)′ = plus(x′, y)′
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3. Now will will prove plus(x, y) = plus(y, x) for any x and y by mathematical
induction with respect to y. 1. yields

plus(x, 0) = plus(0, x).

Assume that plus(x, y) = plus(y, x) for any x, we have from 2.

plus(x, y′) = (plus(x, y))′ = (plus(y, x))′ = plus(y′, x).
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