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1 Fields of AI
AI stands on many fields.
Application
• Expert system

– A computer system that emulates the decision-making ability of
a human expert.

– Prediction, diagnosis, design, planning, monitoring, debugging,
repair, instruction, control, etc.

• Natural language processing
– Understand and generate sentences to communicate between hu-

man and computer
– Language translation
– Speech recognition and generation

• Pattern recognition
– Optical character recognition (OCT): Postal number reader
– Computer vision, face detection and recognition.
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• Autonomous vehicle and robots
• Art (music and painting) generation
• Games (chess and Go)
• Big Data

– Extract information from a huge amount of data (The history of
web accesses, tweets, positions, texts, and so on)

– Marketing
– Diagnostics : Building, bridge, etc. Airplane, train, etc.

Hardware
• General purpose computer

– ENIAC : Electronic Numerical Integrator and Computer, 1945
– IBM System 360, i386, Core, ARM, ...

• LISP machine (1973)
– LISP (List Processor) : Programming language to handle symbols

easily
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• PSI (Personal Sequential inference Machine),
PIM (Parallel Inference Machine)
– Prolog : Programming language for logical inference

• GPGPU (General Purpose Graphic Processing Unit)
– NVidia TESLA V100: Over 5,000 calculation cores.

7 TFlops (FP64), 28 TFlops (FP16),
– Deep learning and image processing (Linear algebra).
– CUDA : Compute Unified Device Architecture

Methods
• Symbol processing
• Logic inference
• Statistical learning
• Neural networks
• Deep learning
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2 Statistical learning theory
2.1 Framework
• z: pattern
• Pattern are observed randomly.
• F(z): cumulative probability distribution function
• Assumption: each pattern has its category.
• Assumption: a family of (classification) functions dα(z) (α ∈Λ) that

returns a category for an input pattern z.
•We define a function Q(α, z) with a classification function dα(z).

Q(α, z) ≡
{

0 (the result of dα(z) is correct)
1 (the result of dα(z) is incorrect) .

• R(α) : the expectation of the risk of a classification function dα.

R(α) = EzQ(α, z) =
∫

Q(α, z)dF(z)
(
=

∫
Q(α, z) f (z)dz

)
.

The problem is to obtain the classification function dα that mini-
mizes R(α).
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• For learning, we can use only finite number of patterns.
• K : the number of learning patterns.

z1, z2, . . . , zK.

• Assumption: we know the category of each learning patterns.
• The risk of a classification function for learning patterns is calcu-

lated by

Remp(α) =
1
K

K∑
k=1

Q(α, zk).

We call it the empirical risk.
• The difference between two risks is evaluated in statistical learning

theory.

R(α) =
∫

Q(α, z)dF(z),

Remp(α) =
1
K

K∑
k=1

Q(α, zk).
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Definition 1. ERM (empirical risk minimization) principle
Use dα that minimized Remp(α) instead of R(α).

• Learning patterns appear according to a p.d.f. f (z).
• Estimate the expectation of Q(α, z) from Q(α, zk) for learning pat-

terns zk.
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2.2 Entropy, annealed entropy, growth function
• NΛ(z1, z2, . . . , zK) : the number of different (Q(α, z1),Q(α, z2), . . . ,

Q(α, zK)) when we fix (z1, z2, . . . , zK) and vary α ∈ Λ.
• That is the number of different types of risk array of classification

functions for a fixed set of input patterns.
• Entropy :

HΛ(K) = Ez1,z2,...,zK ln NΛ(z1, z2, . . . , zK)

• Annealed entropy :

HΛann(K) = ln Ez1,z2,...,zKNΛ(z1, z2, . . . , zK)

• Growth function :

GΛ(K) = ln max
z1,z2,...,zK

NΛ(z1, z2, . . . , zK)

•We have following relation.

HΛ(K) ≤ HΛann(K) ≤ GΛ(K)
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2.3 Basic inequality
The following theorem is one of the most important theorems for sta-
tistical learning theory.

Theorem 1. We have following relation. (Basic inequality)

P
{

sup
α∈Λ
|R(α) − Remp(α)| > ε

}
< 4 exp


HΛann(2K)

K
−

(
ε − 1

K

)2 K

 .
• The left hand side is the probability that learning patterns (z1, z2, . . . , zK)

appears, with which the maximum absolute difference between the
ensemble risk and the empirical risk among all α ∈ Λ is larger than
ε.
• Since HΛann(2K) < GΛ(2K),

P
{

sup
α∈Λ
|R(α) − Remp(α)| > ε

}
< 4 exp


GΛ(2K)

K
−

(
ε − 1

K

)2 K

 .
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2.4 VC (Vapnik-Chervonenkis) dimension
Theorem 2. For any integer K, we have GΛ(K) = K ln 2 or there exists
an integer h (VC dimension) such that

GΛ(K) = K ln 2 (K ≤ h)
GΛ(K) ≤ ln

(∑h
i=0 KCi

)
(K > h)

•When the number of samples is less than or equal to h, there ex-
ists an classifier that splits all samples correctly for any labeling of
samples.

Theorem 3.

P
{

sup
α∈Λ
|R(α) − Remp(α)| > ε

}
< 4 exp


h(1 + ln(2L/h))

K
−

(
ε − 1

K

)2 K

 .
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2.5 VC dimension and risk

Corollary 1. With probability 1 − η the following relation holds.

R(α) − Remp(α) ≤
√

h(1 + ln(2K/h)) − ln(η/4)
K

.
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2.6 Linear classifier and VC dimension
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2.7 Support vector machine (SVM)
• A linear classifier (of two-class problem):

d(x) = ⟨w, x⟩ + θ.
• (xk, yk): a pair of sample xk and its label yk(= ±1) (k = 1, 2 . . . , K)

Maximize margin

13



2.8 Margin and VC dimension

• Assume that the norm of patterns are upper bounded. The larger
margin the fewer VC dimension is.
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2.9 Soft margin
• Soft margin : Some errors are allowed.

1
Margin

+C (Sum of errors)→ min.
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2.10 Solution of linear SVM
Lagrange’s method :
Subject to

0 ≤ αk ≤ C, (k = 1, 2, . . .K)
K∑

l=1
αkyk = 0 (1)

Maximize

LD =
K∑

k=1
αk −

1
2

K∑
k=1

K∑
l=1
αkαlykyl⟨zk, zl⟩ (2)

• Variables for optimization problem are only αl.
• The dimension of this problem is the number of samples.
• The classification function can be calculated by

d(x) =
∑

zl∈S V
αlyl⟨zl, x⟩ + θ (3)

• θ is obtained by using KKT condition.
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2.11 Kernel method for nonlinear SVM
• Patterns are mapped by a nonlinear function Φ.

Example: Φ(x1, x2) = (x2
1, x

2
2,
√

2x1x2,
√

2x1,
√

2x2, 1)

Kernel function : k(x, z) ≡ ⟨Φ(x),Φ(z)⟩ = ⟨x, z⟩2 + 1
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2.12 Nonlinear SVM
• Classification function and its criterion of linear SVM are expressed

only by inner products. (Kernel method)
• Classification function

d(x) =
∑

zl∈S V
αlylk(zl, x) + θ (4)

• The optimization problem for learning is given as
Subject to

0 ≤ αk ≤ C, (l = 1, 2, . . .K),
K∑

k=1
αkyk = 0 (5)

minimize

LD =
K∑
k
αk −

1
2

K∑
k=1

K∑
l=1
αkαlykylk(zk, zl) (6)

with respect to αk.
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3 Neural networks
3.1 Perceptron
• An imitation of a biological neuron

– xi : inputs to a perceptron. (i = 1, 2, · · · , N).
– wi : weights (i = 1, 2, · · · , N).
– θ : threshold.

•We extend an input vector and a weight as x0 = 1 and w0 = θ,
then we have

N∑
i=1

wixi + θ =
N∑

i=0
wixi

• The output f (x1, . . . , xN) of perceptron is given by.

f (x1, . . . , xN) =

 1
(∑N

i=0 wixi > 0
)

0 (otherwise)
.
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Perceptron

Training algorithm

• (x(k)
i , y

(k)) : a pair of sample data x(k)
i and its label y(k)(= ±1) (l =

1, 2 . . . , K)
• Update rule:

wi ⇐ wi − µ( f (x0, . . . , xN) − y(k))x(k)
i
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3.2 Neural network
Artificial neuron

f (x) = ϕ(z), z = ⟨w, x⟩ =
N∑

n=1
wnxn

• ϕ(z) is the activation function.
Example: sigmoid function

ϕ(z) =
1

1 + eγz

https://upload.wikimedia.org/wikipedia/commons/a/ac/Logistic-curve.png
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Multi-layer network
• L : the number of layers.
• Nl : the number of neurons in the l-th layer.
• ϕl(z) : the activation function in the l-th layer.
• xi, l : the i-th input of a neuron in the l-th layer.
• wi, j, l : the weight from the ouptput of the j-th neurons in the (l−1)-

th layer to the i-th neurons in the l-th layer.
(The thresholds are included in weights.)

zi, l =

N(l−1)∑
j=1

wi, j, l x j, l (7)

xi, (l+1) = ϕl(zi, l) (8)

• x j, 1 is the input of the network.
• x j, (L+1) is the output of the network.
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Example: 4-layer neural network

ym =

N3∑
i=1

wm, i, 4ϕ3


N2∑
j=1

wi, j, 3ϕ2

 N1∑
n=1

w j, n, 2xn




23



3.3 Back propagation
Training algorithm for multi-layer network.

• Neural network: ym = fm(x0, . . . , xN1; {wi, j, l}).
• (x(k)

0 , . . . , x
(k)
N1

; y(k)
1 , . . . , y(k)

NL
) : a pair of sample x(k)

n and its target

output y(k)
m (= ±1) (k = 1, 2 . . . , K)

•Minimum squared error (MSE)

argminwi, j, l

K∑
k=1

NL∑
m=1

∣∣∣∣ fm(x(k)
0 , . . . , x(k)

N1
; {wi, j, l}) − y(k)

m

∣∣∣∣2
•Maximum gradient method is applied for each sample point.

Update rule:

wi, j, l ⇐ wi, j, l − µ
∂

∂wi, j, l

NL∑
m=1

∣∣∣∣ fm(x(k)
0 , . . . , x(k)

N1
; {wi, j, l}) − y(k)

m

∣∣∣∣2
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Update rule:

wi, j, l ⇐ wi, j, l − µ
∂

∂wi, j, l

NL∑
m=1

∣∣∣∣ fm(x(k)
0 , . . . , x(k)

N1
; {wi, j, l}) − y(k)

m

∣∣∣∣2
• In the L-th layer, the errors of outputs is defined by

εm, L = fm(x(k)
0 , . . . , x(k)

N1
; {wi, j, l}) − y(k)

m . (m = 1, 2, . . . , NL)

• Then, the update rule of wi, j, l is given by,

wi, j, l ⇐ wi, j, l − 2µ
NL∑

m=1
εm, L

∂

∂wi, j, l
fm(x0, . . . , xN1; {wi, j, l}).

•We describe the derivative of ϕl(z) as

ϕ′l(z) =
dϕl
dz

∣∣∣∣∣z
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∂

∂wi, j, l
fm(x0, . . . , xN1; {wi, j, l})

=

NL∑
iL=0
ϕ′L(ziL, L)wiL, iL−1, L ·

NL−1∑
iL−1=0

ϕ′L−1(ziL−1, (L−1))wiL−1, iL−2, (L−1)

· · ·
Nl+1∑

il+1=0
ϕ′l+1(zil+1, (l+1))wil+1, i, (l+1)ϕ

′
l(zi, l)x j, l (9)

• The update rule can be described as
wi, j, l ⇐ wi, j, l − 2µϕ′l(zi, l)x j, l εi, l,

where εi, l is the errors of outputs to be reduced in the l-th layer:

εil, l =

Nl+1∑
il+1=0

ϕ′l(zil+1, l)wil+1, il, (l+1) εil+1, (l+1).

This can be calculated layer by layer from the end to the beginning.
⇒ Back propagation.
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εil, l =

Nl+1∑
il+1=0

ϕ′l(zil+1, l)wil+1, il, (l+1) εil+1, (l+1).
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3.4 Hopfield network
Traveling Salesman Problem (TSP)
• Cm : city m. (m = 1, 2, . . . , M).
• dmn : the distance between Cm and Cn.
• Search a path of the minimum length that go through all cities and

return to the start city.
• Its computational complexity is NP-complete (even if the distances

are given by Euclidean distance on a plane).

URL: https://jp.mathworks.com/help/optim/ug/travelling-salesman-problem.html
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Hopfield network
• A recurrent network.
• si(= 0, 1) : the state of the i-th unit (neuron) (i = 1, 2, . . . , N).
• wi j : the strength of connection between the i-th and the j-th units.
• θi : the threshold of the i-th unit.
• wi j = w ji

Hopfield network

29



• Update rule:

si ⇐

 1
(∑N

j=1 wi js j − θi ≥ 0
)

0 (otherwise)
.

• Energy function:

E = −1
2

N∑
i=1

N∑
j=1, j,i

wi jsis j +
N∑

i=1
θisi

• From such a quadratic energy function, we can construct a Hopfield
network.
• The energy is not increased by the update.
• At first they consider the Hopfield network can provide the solution

of energy minimization problem (such as TSP) quickly.
• However, it is not true. the Hopfield network cannot give the global

optimum solution in many cases.
• The decreasing will stop at a local minimum point.
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TSP by Hopfield network
• For m = 1, 2 . . . , M and n = 0, 1 . . . , M, we define a mapping as

i(m, n) =
{

m + Mn (n < M)
m (n = M) .

• The states are defined by

si(m, n) =

{
1 (if the path reaches city m after n moves)
0 (otherwise) .

• Energy function:

E =
M−1∑
n=0

M∑
m

M∑
l

dm,lsi(m, n)si(l, n+1)

+α

M∑
n=1

 M∑
m=1

si(m, n) − 1


2

+ β

M∑
m=1

 M∑
n=1

si(m, n) − 1


2

• TSP can be expressed by a Hopfield network.
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3.5 Boltzmann machine
• To solve the problem of local minimum points, the probability is

introduced to the Hopfield network.
• T : temperature
• ∆Ei =

∑N
j=1 wi js j − θi : the difference of energy

• Probability si = 1 at the next stage is given by
1

1 + exp
(
−∆Ei

T

)
• There is a possibility to escape from a local minimum point.
• The probability of the set of states of which energy is the minimum

is higher than the other sets.
• The temperature T is set to a high value and is decreased gradually

to make the convergence faster with a more precise solution.
⇒ Simulated annealing.
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Restricted Boltzmann machine (RBM)
• Two types of units : Visible and Hidden (Latent) units.
•Weights wi, j are zero between units of the same type.
• RBM is used in the training of Deep learning.
⇒Weights wi, j are trained.

Restricted Boltzmann machine (RBM)
URL: https://en.wikipedia.org/wiki/Boltzmann_machine#/media/File:Restricted_Boltzmann_machine.svg
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3.6 Deep learning
• Three layers used be standard for neural network when BP is used.
• Even if the number of layers is increased, the information for learn-

ing is dispersed so that it does not transfer properly between lower
and upper layers and PB does not work well.
• Deep learning is proposed for ’autoencoder’ (automatically tuned

encoder for data compression) by a neural network. (G. E. Hinton
and R. R. Salakhutdinov, “Reducing the dimensionality of data with
neural networks,” Science, vol.313, July 2006.)
• Encoder and decoder are joined. (Input and output are the same.)
• A intermediate layer of which the number of neuron is smaller than

that of input/output layer expresses features of patterns
• The deep learning for the autoencoder consists of

– Pretraining by restricted Boltzmann machine for each layer
– Unrolling by BP
– Fine-tuning
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Pretraining by Restricted Boltzmann machine (RBM)

• The network for the encoder is trained layer by
layer.
• vi : i-th component of visible unit

(0 or 1, binary pixel)
– Input image for the first layer.
– The output of the (l−1)-th layer for l-th layer.

• h j : j-th component of hidden unit
(0 or 1, binary feature)
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Training of RBM
• Repeat the following steps

– Obtain h j from vi by the following probability

P(h j = 1) =
1

1 + e
∑

i wi, jv j

– Obtain the confabulation ṽ j from hi by the following probability

P(ṽ j = 1) =
1

1 + e
∑

j wi, jhi

• Calculate ⟨hi v j⟩ that is the fraction of times when v j and hi are on
together.
• Calculate ⟨hi ṽ j⟩ similarly.
• Update the weight :

wi, j ⇐ wi, j + λ(⟨hi v j⟩ − ⟨hi ṽ j⟩),
where λ(> 0) is a learning rate.
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Unrolling by BP
• The transposition of weight in

l-th layer is used for (L − l + 1)

Fine-tuning
• Standard BP is used for the

final tuning.
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Data compression of MNIST handwritten numeral images

• Nine-layer network (784(= 28 × 28) − 1000 − 500 − 250 − 2)

BP Deep learning
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3.7 Convolutional Neural Network (CNN)
CNN consists of
• Convolutional layer

– A data in a region is mapped to a node of the upper layer similarly
to convolution so the weights are sift invariant.

– Several types of convolutions are applied.
– Consider 1D case. Let wi, j be the weight of the t-th type from

j-th node to i-th node of the upper layer. Then for any k, we have

w(i−k),( j−k),t = wi, j,t

• Pooling layer : the amount of date is reduced.

By Aphex34 - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=45673581
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• Fully connected layer (for the last layer)

Activation function f (x)

• ReLU : rectified linear units (= hinge loss) : max(0, x)

• Sigmoid function : 1/(1 + e−x)
• Softmax : eyi/

∑
j ey j : activation values in other units are used.

S. Albelwi and A. Mahmood, “A Framework for Designing the Architectures of Deep Convolutional Neural Networks,” Entropy, 2017.
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Features in CNN
Daniel Jeffries, “Learning AI if You Suck at Math - P5 -ŁDeep Learning and Convolutional Neural Nets in Plain English!,”

https://hackernoon.com/learning-ai-if-you-suck-at-math-p5-deep-learning-and-convolutional-neural-nets-

in-plain-english-cda79679bbe3
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3.8 Long Short Term Memory (LSTM)
• A type of recurrent networks.
• S. Hochreiter and J. Schmidhuber, “Long Short-term Memory,”Neural

Computation 1997.
• Alex Graves, et al. ”Speech recognition with deep recurrent neural

networks,” ICASSP 2013.
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• xt : input vector
• ct : state vector
• f t : forget gate vector
• it : input gate vector
• ot : output gate Vector
• ht : output vector
•W f , Wi, Wo, Wc, U f , Ui, Uo, Uc, b f , bi, bo, bc : parameters
• σh : activate function for state
• σg : activate function for state, input gate, and output gate
• σh : activate function for output

Update rule: (◦ : Hadamard product (element-wise product))

• f t = σg(W f xt + U f ct−1 + b f )
• it = σg(Wixt + Uict−1 + bi)
• ot = σg(Woxt + Uoct−1 + bo)
• ct = f t ◦ ct−1 + it ◦ σc(Wcxt + Ucct−1 + bc)
• ht = ot ◦ σh(ct)
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3.9 Generative Adversarial Network (GAN)
• Ian J. Goodfellow, et al. ”Generative Adversarial Nets,” NIPS, 2014.
• Two types of networks.

– Discriminative network : D(x)
The probability that x came from the data rather than Generator.

– Generative network : G(z):
The generated pattern from a noize z.

Modified from https://skymind.ai/wiki/generative-adversarial-network-gan
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• Criterion:

min
G

max
D

Ex≃pdata(x)[log D(x)] + Ez≃pz(z)[log(1 − D(G(z)))].

– D(x) to discriminate precisely.
– G(z) to generate patterns that cause misclassification of D(x).
– Its original purpose is precise discrimination.
– But the trained G(z) is used as a pattern generator.

Hunter Heidenreich, “What is a Generative Adversarial Network?,”
URL:https://towardsdatascience.com/what-is-a-generative-adversarial-network-76898dd7ea65
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4 Conclusion
• AI stands on many fields

– Linear algebra
– Statistical learning
– Logic inference
– Image and signal processing
– Natural language processing
– Parallel computing.

•Many applications
– Pattern recognition
∗ Character recognition
∗ Computer vision (face detection and recognition))

– Decision making (diagnostics and AlphaGO)
– Natural language processing (for communication)
– Big data (marketing and data scientists)
– Autonomous vehicle and robot
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•Week points
– Logical thinking and integration of information.
– AlphaGo : strong in earlier and last stages but weak in middle.
– For autonomous vehicle, a range finder (can measure distance) is

necessary although a human can drive a car with only an eye.
• Future

– Precise recognition
– Practical autonomous vehicle and robot
– Language translation
– Artificial general intelligence.

Instead of human, machines do everything.

Thank you very much for listening.
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