
Applied programming and numerical analysis

Lecture 1: Introduction and Programming of Python

Abstract

• Introduction

• Python

• Let’s get started.

Homepage : http://www.ide.titech.ac.jp/∼yamasita/APN/

1

1 Introduction

1.1 Purpose of this lecture

Department of Transdisciplinary Science and Engineering

• Problems has become more complex.

– Increase of resource consumption and emissions
⇒ Global environmental problems

– Power of human beings has become strong comparing to nature in the
earth.

– If the power is week, only a city or a culture will go to ruin. Such cases actually
happened.

– Because the power is stronger, human beings as well as other lives cannot survive.

• To solve such problems, international corporation and regulation are necessary.

• However, it is very difficult to solve such problems

– Some groups of researchers say “No problem”. (Even in our institute).

– Solving the problems is postponed because it is not clear.
(Untoward facts are neglected.)

– The Clash of Civilizations

Engineering Transformation is necessary.

2

• Department of General Medicine Primary Care

– When we go to a hospital, it is sometimes difficult to decide to which department we
should go.

– Patients do not concern about the department even surgery and internal medicine.
What we need is only that the disease is cured.

– However, now our destiny will be changed by the firstly selected department, surgery
or internal medicine.

– Furthermore, in case of a hospital of Japanese university, the first and second depart-
ments of internal medicine does not use the same curing procedure for the same disease.

3

• Science and Engineering have be reconsidered
⇒ Transdisciplinary Science and Engineering

– Consider not from chemical, machine, electronic, information, environmental engineer-
ings but from the problem that should be solved.

– Engineers tend to depend on their speciality.

– Specialities such as civil and electrical engineerings have been split historically.

– However, they may not be optimum.

– There are many Overlaps.

– Of course, an individual progress is important.
(Robot, Hybrid car, solar power generation, HDTV)

– However, can they solve such huge problems?

Transdeciplinary Science and Engineering

• By getting over walls between countries or disciplines, it contributes to
welfare of human beings.

4

Programming and numerical analysis

• If we compare engineerings to functions in a man, computer is brain.

• That is very important to enhance intellectual activities of men.

• A Computer is not only in PC or a super computer but also in a smart phone, a camera,
a car, a remote controller, etc.

• To make a thing, a design is necessary.

• The design should be evaluated to make a proper thing.

• If you make a real thing for the evaluation, it takes much cost or is sometimes dangerous.

• They should be virtually evaluated at first.

• For a complex thing, an analytic solution is not enough so that numerical analysis is
necessary.

• Numerical analysis is used not only in chemical mechanical, electrical, computer, environ-
mental and civil engineering but also in economics and

Programming and numerical analysis is a very fundamental subject in Transdisciplinary
Science and Engineering.

5

1.2 Text book

1.3 Schedule (Yamashita)

1. Guidance and introduction to Python (Yamashita) 12/4
Programming of Python: Variables, expression, and control (Yamashita)

2. Programming of Python: Class (Yamashita) 12/11
Practice: Sorting (Yamashita) 12/11

3. Programming of Python: Array (Yamashita) 12/18
Practice: Matrix calculation (Yamashita) 12/18
Practice: Statistical calculation (Yamashita) 12/18

4. Practice: Discrete Fourier transform 12/25
Practice: Image processing 12/25

6

2 Introduction to Python

• Conceived in the late 1980s.

• Implemented in 1998.

• Python 2 was released in 2000.

• Python 3 was released in 2008.
(We will use Python 3.4.)

• Python is a high-level programming language.

– Low-level: similar to codes which CPUs execute directly.
Examples: Machine language and Assembly language of which statement has almost
one-to-one mapping to statement of the machine language.

– High-level: easy to understand by humans
Examples:FORTRAN, Java, and C++

• Python is general.

– Targeted to an application domain.
Examples: MATLAB for matrix calculation and R for statistical calculation.

– General
Examples: C, C++, Java, and Ruby Examples:FORTRAN, Java, and C++

7

• Python works by Interpreter.

– Interpreter: Execute a line by a line of a source program.
Example: JavaScript, PHP, and Ruby.

– Compiler: A source program is converted to a program in machine language and the
latter is executed in a computer.
Example: C, C++, and FORTRAN

8

2.1 Let’s get started

• We use “jupyter notebook” to execute a python program.

• Open a terminal and type:

• First we make a folder and move to it.

$ mkdir APN

$ cd APN

$ mkdir Python

$ cd Python

• Then, we start ”jupyter notebook”.

$ jupyter notebook

• A web browser starts and a cell to be input appears.

• Click ’New’ and click ’Python 3’.

• A cell to be input appears.

• Please remember two short cut.

– Ctrl-Enter (Push Ctrl key and Enter key simultaneously.): Execute command.

– Shift-Enter (Push Shift key and Enter key simultaneously.): Make a new cell.

• Write the followings in a sell.

print("Hello world.")

9

• And type Ctrl-Enter.

• You can see Hello world.

• Type Shift-Enter and write

a = 4

b = 7

c = a + b

print(a, b, c)

• And type Ctrl-Enter.

• Rewrite the last line to

print("{0} + {1} = {2}".format(a, b, c))

• And type Ctrl-Enter.

10

3 Introduction to Python

3.1 Variables

Variables can contain a values, values with structure, and objects.
Identifier

• Name for a variable, a function, and a class.

• Letters can be used for name of variable:

– Alphabet (a, b, ..., A, B, ...): Lower and upper cases are distinguished.)

– Numeral (0, 1, 2, ...) They cannot be used for the beginning.

– _

– Almost all of Unicode (あ, ア, 阿, ...) Some of symbols are not allowed.

• Example

– Good: abc, _dAf_g, エビシ, 阿, π
– NG: 3abc, $abc, 阿。, ３abc

• Keywords (Don’t use as the name of variable.)

• False, None, True, and, as, assert, break, class, continue, def, del, elif, else,
except, finally, for, from, global, if, import, in, is, lambda, nonlocal, not, or,
pass, raise, return, try, while, with, yield

• Reserved classes of identifiers
_*, __*, __*__,

11

3.2 Type of data

• Every data is handled as a object in Python.

• Integer and float are also objects.

Embedded types for numbers

• bool

• int

• float

• complex

Embedded types for multiple data

• Immutable sequence

– tuple

– string

– bytes

• Mutable sequence

– list

– bytearray

12

• Set

– set (mutable)

– fronzenset (immutable)

• Mapping

– dictionary

13

3.3 Literal

A literal expresses a concrete value.

3.3.1 Numbers

• bool : True, False

• int : 123, -123

• float : 2.5, -0.003, 2.3e10, -2.553e-12

• complex : 3.0+2.1j, -2.1e-2+3.2e3j

3.3.2 None

None

3.3.3 String

• ’This is a pen.’

• "This is a pen."

14

3.3.4 List

• [1, 4, 2, 5, 1, -2]

• ["This", "is", "a ", "pen"]

3.3.5 Tuple

• (1, 4, 2, 5, 1, -2)

• ("This", "is", "a ", "pen")

• (1, "This", -3.0, "a")

3.3.6 Dictionary

• {1:"Freshman", 2:"Sophomore", 3:"Junior", 4:"Senior"}

• {"Freshman":1, "Sophomore":2, "Junior":3, "Senior":4}

• {(3, 4):7, (2, 4):"ABC", ("ab", 3)":112, ("dd", "ss"):"32"}

3.3.7 Set

• {1, 4, 2, 5, 1, -2}

• {"This", "is", "a ", "pen"}

• {1, "This", -3.0, "a"}

15

3.4 Operator

3.4.1 Arithmetic operator

(Previlege Low → High)
Operator meaning
x + y

x - y

x * y

x / y

x // y devision as integers
x % y

-x

+x

x ** y xy

16

3.4.2 Logical operator

(Previlege Low → High)
Operator meaning
x or y logical
x and y logical and
not x negation

3.4.3 Bit operator

(Previlege Low → High)
Operator meaning
| logical or for each bit
^ exclusive or for each bit
& and for each bit
<<, >> Bit shift (left, right)
~ Negation

17

3.4.4 Comparison operator
Operator meaning
x < y

x <= y

x > y

x >= y

x == y

x != y

x is y x and y are the same object.
x is not y

x in y x is included in y.
x not in y

3.4.5 Membership operator
Operator meaning
x in y x is included in y.
x not in y

18

3.4.6 Equality operator
Operator meaning
x is y x and y are the same object.
x is not y

3.4.7 Cumulative assign operator

(Previlege Low → High)
Operator meaning
x += y x = x + y

x -= y x = x - y

x *= y x = x * y

x /= y x = x / y

x //= y x = x // y

x %= y x = x % y

x >>= y x = x >> y

x <<= y x = x << y

x &= y x = x & y

x ^= y x = x ^ y

x |= y x = x | y

19

3.4.8 Operators in Python

(Previlege Low → High)
Operator meaning
lambda

if else

Logical operators
Membership operators
Equality operators
Bit operators (Except ~x)
Arithmetic operators (Except +x, -x, and x ** y)
+x, -x, and ~x

x ** y

x.attribute reference of attribute
x[index], x[index:index] indexces of array
x(expression, ...) Call of a function
(expression, ...) Tuple literal
[expression, ...] List literal
[key: value, ... } Dictonary literal
{expression, ... } Set literal

20

3.5 Expression

• The expression can be evaluated and have a value.

• Examples:

– literals: 3, [1, 2]

– Combination of operator and operand: -x, x + y, z = x + y, x == y

– Function: sin(x)

3.6 Statement

• Statement expresses a procedure.

• Expression is also a statement.

• Examples of statement: if, elif, else, break, continue, and import statements.

21

3.7 Control

3.7.1 If

• Conditional execution.

x = 3

if (x == 3):

print(’x is three.’)

print("End of program.")

3.7.2 else

x = 3

if (x == 3):

print(’x is three.’)

else:

print(’x is not three.’)

print("End of program.")

22

3.7.3 elif

x = 3

if (x == 3):

print(’x is three.’)

elif (x == 7):

print(’x is seven.’)

else:

print(’x is not three or seven.’)

print("End of program.")

23

3.7.4 Nest

• Conditional sentences in a conditional sentence.

• Loop sentences in a loop sentence.

x = 3

y = 5

if (x == 3):

if (y == 5):

print(’x is three and y is five.’)

else:

print(’x is three and y is not five.’)

else:

if (y == 9):

print(’x is not three and y is nine.’)

else:

print(’x is not three and y is not nine.’)

print(’x is not three.’)

print("End of program.")

24

3.7.5 for

• Loop sentence

• Range object : range(2, 6) is equivalent to (2, 3, 4, 5)

sum = 0

for x in range(1, 11):

print(x)

sum += x

print(sum)

By using list.

sum = 0

for x in (1, 2, 3, 4, 5, 6, 7, 8, 9, 10):

print(x)

sum += x

print(sum)

Try by changing tuple to

• List: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] and [2, 1, 3, 4, 5, 6, 7, 8, 9, 10]

• Set: {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} and {2, 1, 3, 4, 5, 6, 7, 8, 9, 10}

25

dic = {1:"one one", 2:"two", 3:"surii"}

for key in dic:

print(key)

print(dic[key])

26

3.7.6 break, continue, else

• break : Exit from loop.

• continue : Latter part of loop is skipped.

• else : When the loop ended normally (not by break) the following block is executed.

sum = 0

for x in range(1, 11):

print(x)

if (x == 5):

break

sum += x

print(sum)

sum = 0

for x in range(1, 11):

print(x)

if (x == 5):

continue

sum += x

print(sum)

sum = 0

27

for x in range(1, 11):

print(x)

if (x == 5):

break

sum += x

else:

print("Else sentence")

print(sum)

sum = 0

for x in range(1, 11):

print(x)

if (x == 5):

continue

sum += x

else:

print("Else sentence")

print(sum)

28

3.7.7 while

• When the condition is true, the following block is executed.

sum = 0

x = 1;

while x < 11:

print(x)

sum += x

x += 1

print(sum)

29

3.8 Function

• When you have many same processes for various values, it is not good to describe them
respectively.

• Define a function that describes the process.

• A function is defined by def.

• A function of python can return multiple values by using return.

• When a function is called, arguments specified by order or variables.

Example

def printxy(x, y):

print("x = {0}, y = {1}".format(x, y))

printxy(2, 4)

printxy(y = 2, x = 4)

30

Example

Return product

def prod(x, y):

prodv = x * y

return prodv

a = 10

b = 7

u = prod(a, b)

print("{0} x {1} = {2}".format(a, b, u))

31

Example

Euclidean algorithm

def euclid(x, y):

u, v = x, y

while(u != 0):

u, v = (v % u), u

else:

lcd = v

mcm = int(x * y / lcd)

return lcd, mcm

x = 12

y = 9

a, b = euclid(x, y)

print("For {0} and {1}, LCD = {2}, MCM = {3}".format(x, y, a, b))

32

Value or reference.

def valOrRef(x, y):

x = 11

y[1] = 12

print("x and y[1] in a function are {0} and {1}".format(x, y[1]))

x = 1

y = [1, 2, 3]

print("x and y[1] at first are {0} and {1}".format(x, y[1]))

valOrRef(x, y)

print("x and y[1] after the function are {0} and {1}".format(x, y[1]))

33

3.9 Report

• For every class, students have to submit a report in 7 days after the lecture.

• The file should be the nootbook format of ipython. Its file name should (student num-
ber)Lec(day of class).ipynb. It is 17B54321Lec1.ipynb for example.

• Markdown cell is allowed to describe the report.

• Send the file by mail to eniac1121@gmail.com .

34

Markdown

• A blank line (Sometimes two blank lines) is not necessary to separate blocks.

• # : For titles

• - : For list. (Indent can be used)

• 1. : For list with a number. (Indent can be used)

• (4 spaces or tab) For preformatted text (block).

• Two spaces after a text : New line

• Between two ‘ : For preformatted text in a line.

• Equation:

$$

\frac{1}{2} + \frac{1}{3} = \frac{5}{6}

$$

is displayed as
1

2
+
1

3
=

5

6

3.10 Objects

Discuss at the next class.

35

