

Renewable Energy for Urban Application: Case Study- Surabaya

Elieser Tarigan, PhD.

Center for Renewable Energy Studies UNIVERSITAS SURABAYA 2014

Outlines

- Urban Energy Facts
- What to Expect from Renewable Energy
- Renewable Energy Types
- Obstacles to the Use of Renewable Energy in Urban Areas
- Case Study: Solar Electricity for a house hold in Surabaya
- Conclussions and Recomendation Steps for Advancing Renewable Energy in the Cities

Urban Energy Consumtion Facts

- More than 70% of energy consumed and over 70% of the greenhouse gas emissions from human activities in Cities
- Cities cover 2% of the world's land mass but account for 70% of global Gross Domestic Product (GDP).

What to Expect from Renewable Energy

- A cleaner, healthier environment through improved local air quality and reduced greenhouse gas (GHG) emissions.
- Greater energy security.
- A greener economy and expansion in availability of green jobs.
- Local industrial development.
- Trade and export opportunities.
- Urban renewal.
- Regional development.
- A safer, more secure, cleaner, reliable and more efficient energy system.

Renewable Energy Types (T):

According UU NO. 30/2007 TENTANG ENERGI

- T1. Geothermal
- T2. Hydropower
- T3. Bioenergy
- T4. Solar Energy
- T5. Wind
- T6. Oceanic Energy
 - Wave
 - Tydal
 - OTEC

Obstacles to the Use of Renewable Energy in Urban Areas

- Policy and Institutional Obstacles
- Financial Obstacles
- Technology Obstacles

Policy and Institutional Obstacles

- Complex and/or unclear local permitting requirements.
- Restrictions on utility interconnection of renewable energy power generation units.
- Lack of sufficient inspectors and permitting authorities experienced with RE systems in urban applications.
- Lack of "certified" renewable energy
- Difficulty for private power developers to sell power generated to the grid
- Protection of contracts and intellectual property.
- Existing electricity laws that can be counter productive.

Financial Obstacles

- Higher upfront costs of Renewable Energy
- Fossil Fuel Subsidies
- Capital Market Constraints
- Import Duties on Renewable Energy Components, Products and Materials
- Reluctance of Traditional Sources of Project Financing
- Value Added Taxes (VAT)
- Lack of Tax Credits for Domestic Capital Equipment and Services
- Lack of Fast-Track Project Approval Mechanisms
- Limited City Government Investments in Renewable Energy Facilities
- Lack of or Inadequate High Technology Investment Programs
- Lack of Integrated Supply Chains

Technology Obstacles

- Lack of Resource Assessments
- Availibility of Land
- Lack of consumer knowledge
- ..etc for Each Resouces-Specific Obstacles

Case Study:

Solar Electricity for a house hold in Surabaya

Basic electricity need (loads):

- Lighting using CFL Lamps
 - Terrace ,2 sets @ 9W run 6 h/day
 - Living room, 2 sets @ 13W run 8 h/day
 - Kitchen, 1 sets 13 Watt runs 8 h/day
 - Bath room, 1 set 9 Watt runs 4 h/day
 - Bed rooms, 3 sets @ 9 Watt run 5 h/day
 - Others lighting, 36 Wh/day
- Cooling fan 2 sets @ 35W runs for 6 h/day
- TV 60 W, runs 5 h/day
- Rice cooker 300W runs, 1,5 h/day
- Refrigerator 1 set 55W run 24 h/day
- Other needs 100Wh/day

Case Study: Solar Electricity for a house hold

- Primary electricity needs 3,2 kWh/day
- A 800 Wp Solar Panels
- 2 Sets 20A Solar Charge Controler
- 4 sets of 100 Ah, 12V Batterai
- 1500W DC-AC inverters
- Using existing cabling network (grid)

Project On Sustainability Transformation beyond 2015

Some Experience from the case study

- Solar radiation relatively high in Surabaya, 4,8 kWh/day.m²
- Grid tied (net metering) should be better in efficiency and energy gain, but there has not been any policy
- Lack of availability of the system components locally
- Properly setting and operation is necessary
 need basic knowledge
- Poeple Responses: "agree but not trust"

- Utilization of solar energy for house hold for sustainability
- Need policies on small solar system
 - Grid tie policy
 - Feed in tariff
- Encouraging RESCOs business
- Training basic knowledges for users
- Public socialization and education

Conclussions and Recomendation Steps for Advancing Renewable Energy in the Cities

- 1. Understand What Renewable Energy Means to our City
- 2. Make a Commitment to Renewable Energy
- 3. Initiate a Plan of Action
- 4. Build an Effective Policy Framework
- 5. Establish Rules and Regulations
- 6. Address Technical Issues
- 7. Provide Access to Financing
- 8. Launch a Renewable Energy Awareness Campaign
- 9. Strengthen Local Capacity
- 10. Lead by Action

