直接測定に基づく東京湾海表面温度が 都市の気温へ及ぼす影響

IMPACT OF THE ACTUAL SEA SURFACE TEMPERATURE OF TOKYO BAY ON URBAN AIR TEMPERATURE

小田僚子¹・神田学²・森脇亮³ Ryoko ODA, Manabu KANDA and Ryo MORIWAKI

 1学生会員 東京工業大学大学院 理工学研究科 国際開発工学専攻・日本学術振興会 特別研究員 (〒152-8552 東京都目黒区大岡山2-12-1 I4-9)
 2正会員 工博 東京工業大学大学院 理工学研究科 国際開発工学専攻 准教授(同上)
 3正会員 博(工) 愛媛大学大学院 理工学研究科 生産環境工学専攻 准教授 (〒790-8577 愛媛県松山市文京町3)

To investigate the impact of the actual sea surface temperature (SST) of Tokyo Bay on urban air temperature, an observation network was constructed. SST had been measured at 14 observation sites, such as the lighted buoy in Tokyo Bay since November 2006 to September 2007, and urban air temperature was simulated using the numerical modeling system, WRF, in which SST obtained from this observation was used. In this study, the following results are obtained.

- (1) From observational study, spatial distribution of air temperature is similar to that of SST, and air temperature over Tokyo Bay is considerably affected by air advection from the coastal land area.
- (2) Actual SST of Tokyo Bay has significant seasonal and diurnal variation compared with outer SST.
- (3) Air temperature at Tokyo increases about 0.1° C in summer if the outer SST is replaced with observed SST in Tokyo Bay in the numerical simulation.

Key Words : Sea Surface Temperature, Tokyo Bay, Semi-Closed water area, Urban area, Field observation, Numerical simulation

1. はじめに

近年,都市域に顕在化しているヒートアイランド現象 や集中豪雨などの大気環境問題に対し,首都圏に隣接し て存在する東京湾が注目されている.これまで,長期的 観点で八木ら(2004)¹⁾ や安藤ら(2003)²⁾は冬季に東京湾の 水温が上昇することを指摘し,また東京湾に流入する河 川水温も最大で4℃以上も上昇していることなどが木内 (2003)³⁾によって報告されており,東京湾の様相が確実 に変化してきている.一方で,東京湾は海陸風循環に よって都市気象に影響を及ぼしていることもかねてから 指摘されている^{4,5}.しかしながら,その駆動力のひと つである海表面温度 (SST) については,例えば気象庁 現業数値予報モデルの計算において衛星観測から得られ る水温を導入し,日変化がほぼ一定と仮定されるなど, 今日まで詳細には理解されてこなかった.これに対し, 小田ら(2006)⁶は東京湾奥部において,放射計による SSTの間接測定から、東京湾SSTは外洋データから見積 もられた値よりも明らかに大きな日較差が現れることを 示しており、今日の都市大気環境問題を考える上で、東 京湾の正確なSSTを把握することが重要であると考えら れる.このような背景から、本研究では東京湾内湾全域 を対象として、長期連続的にSSTを直接測定する観測網 を構築し、観測で得られた実際の東京湾SSTをメソ気象 モデルWRFに組み込むことで、実際の東京湾SST変化が 都市大気環境に及ぼす影響を考察する.

2. 現地観測

(1) 観測地点

東京湾は、房総半島、三浦半島および首都圏臨海部に 囲まれた半閉鎖性水域であり、横須賀市観音崎と富津市 富津岬を結ぶライン以北を内湾、そこから三浦市剣崎と 館山市洲崎を結ぶラインまでを外湾と呼んでいる.沿岸 部はほとんどが食品コンビナート,鉄鋼・石油関連企業の専用岸壁として使用される工業地帯となっている.面積は約1,380km²,内湾の平均水深は約15mで,湾口に向かって徐々に深くなり,外湾では平均約45mとなる⁷⁾.

本観測では、内湾部を対象として、既存の灯標、灯浮 標および海上構造物の計14地点において水温計(HOBO U22 Water Temp Pro v2, Onset Computer Corporation製)と 気温計(HOBO H8 Pro Temp, Onset Computer Corporation 製)を設置し(表-1参照), 2006年11月から2007年9月 までの11ヶ月に渡って長期連続的な直接測定を実施した. 観測地点を図-1,航路標識への設置状況を図-2に示す. 水温計は海表面から約1cmと約20cmの2箇所に設置した.

(2) データ処理

水温および気温は10分間隔の瞬間値として計測してい るが、本研究では観測データを1時間平均値の統計量と して扱っており、12時のデータとは12:00~12:50(JST) までの6つのデータの平均値を指す.なお、測器が故障 もしくは干出していたと見られるような明らかな異常値 は除外した.

3. 観測結果

(1) 海表面温度と気温の時空間分布

図-3,4に冬季と夏季における東京湾のSSTと海上気温 の空間分布および日変化の様子を示す.対象期間は、そ れぞれ2006年12月11~20日、2007年8月7~16日の10日間 で、この期間をアンサンブル平均した15時台の結果を空 間分布として示している.

SSTの空間分布に着目すると、冬季は湾奥よりも湾口が暖かく、反対に夏季は湾口より湾奥が暖かい(図-3(a),図-4(a)).冬季は黒潮による暖かい水塊の影響で湾口部が高温化するためと考えられる.図では示していないが、湾口部のNo.10,11地点においては他の地点と比較して日較差が大きく、潮汐変動に対応した温度変化を示していることからも、湾口部は外洋影響を大きく受けていることがわかる.一方夏季は、湾奥部で水深が浅く熱容量が小さいために、湾口部よりも高温化しやすいと考えられる.なお、湾内水温の季節変化は、2月に最低となり11月から2月にかけては湾口部が暖かく湾奥部が冷たいという冬季の特徴を示すが、3月頃には空間的なバラツキはほとんどなくなり、4月以降には傾向が逆転し始め、夏季の特徴を示すようになる.

海上気温の空間分布は、冬季、夏季ともにSSTのそれ と似た傾向を示し、冬季は湾口部、夏季は湾奥部が暖 かくなるが、空間分散はSSTよりも小さい(図-3(b)、 図-4(b)).また、図-3(c)(d)、図-4(c)(d)より、日較 差は明らかにSSTよりも大きくなっている。陸上では地 表面の温度変化が気温へと反映されるのが一般的であ

地図対応 番号	標識名称	北緯	東経	
1	浦安沖灯標	35-36-46	139-53-41	
2	東京灯標	35-33-58	139-49-41	
3	船橋第三号灯浮標	35-36-21	139-58-58	
4	千葉港口第五号灯標	35-33-18	139-59-32	
5	千葉港南袖ヶ浦第二号灯標	35-28-51	139-57-12	
6	木更津港第三号灯浮標	35-23-37	139-49-17	
7	鶴見第二号灯標	35-27-16	139-42-59	
8	東京湾中ノ瀬B灯標	35-22-50	139-43-04	
9	横須賀港沖ノ根灯浮標	35-20-11	139-40-54	
10	第二海堡南東方灯浮標	35-18-09	139-45-16	
11	浦賀水道航路第四号灯浮標	35-15-22	139-47-09	
12	川崎人工島(風の塔)	35-29-29	139-50-04	
13	木更津人工島(海ほたるPA)	35-27-48	139-52-32	
14	千葉波浪観測塔	35-36-39	140-01-24	

図-1 観測地点

図-2 航路標識への観測機器設置状況

表-1 観測機器一覧

Items	Air temperature	Water temperature	
Instruments	HOBO H8 Pro Temp	HOBO U22 Water Temp Pro v2	
	(Onset Computer Corporation)	(Onset Computer Corporation)	
Operation range	-30°C~+50°C	0°C~+50°C	
Accuracy	±0.2°C at 20°C	±0.2°C over 0°C to 50°C	
Resolution	0.03°C at 20°C	0.02°C at 25°C	
Response time	35 minutes still in air	5 minutes in water	
Weight	105g	42g	
Dimensions	102mmH×81mmW×51mm D	3cm max. diameter, 11.4cm length	
Sampling	10minutes	10minutes	

図-4 2007年8月7~16日の15時における (a)SSTと (b)気温の空間分布および (c)SSTと (d)気温の日変化

るが,海上気温はSSTの影響よりも陸域の影響を強く受けていることが考えられる.図中に示す赤い線は,東京都大手町で観測された気温^{8,9}を示したものである.冬季は北から吹く季節風の影響で東京湾上に陸からの空気が流れ込むことにより,海上気温は陸域の気温とほぼ同じ変動傾向を示していると考えられる.一方夏季は,南よりの風が卓越するために陸域の気温とはあまり合致せず,東京で観測された急激な気温の上昇は主に都市活動の影響によるものと予想される.

(2) 客観解析データと実測値との比較

最初に述べたように、現行の気象モデルにおける大気 ー海面相互作用は衛星観測から得られるSSTをパラメー タとして見積もられているのがほとんどであるが、都市 気象のようなメソスケールを対象とした場合は、沿岸域 におけるSSTの精度が重要になると考えられる.

図-5に、東京湾内の湾奥(No.4),湾央(No.12), 湾口部(No.11)で観測されたSSTの季節変化と、それ と同じ地点における衛星観測によるSSTを比較したもの を示す.後者は、東北大学が提供している外洋域新世代 海面水温データ(NGSST-O)を用いている¹⁰⁾.これは衛 星搭載の赤外放射計およびマイクロ波放射計から得られ るSSTを元に作成された客観解析データであり、1日毎 のデータ配信および格子間隔0.05°という高解像度、高品 質の外洋海面水温データセットである.直接観測による 結果は客観解析データと比べて明らかに大きな季節変化 を示し、冬季には両者の差は歴然となり、最も差の大き くなる1月には、平均して湾口で6.0℃、湾央では7.6℃、 湾奥では7.2℃の差が生じている.夏季は両者の差はそ れほど大きくないが、日変化に着目すると実際の東京湾 SSTは2℃以上の大きな日較差が生じる日が多く、この 点で客観解析データとは異なる(図-6).両者の差が生 じる原因として、客観解析データは外洋域を対象として 生成されているため、東京湾のようなかなり陸に近い沿 岸部の水温変動特性を評価できないことが挙げられる.

4. 数値シミュレーション

3(2) で述べた通り、客観解析による水温は沿岸域における実測値とは異なるため、都市気象を対象とした場合は、より正確な沿岸域のSSTをモデルに導入する必要があると考える.

そこで本研究では、直接測定により得られた東京湾の SSTをメソ気象モデルWRF(the Weather Research and Forecasting Model)に組み込み、東京湾における実際の SSTが都市の気温および大気-海面相互作用に及ぼす影 響を検討する.

(1) メソ気象モデルの概要

WRFモデルは米国国立大気研究センター(NCAR)を 始めとする幾つかの研究機関が協力して開発されたメソ 気象モデルである.本研究で用いたモデルの設定を表-2 に示す.対象領域は太平洋,日本海,日本アルプスを含 む中部日本をDomain 1とし,Domain 2 として東京湾を 含む関東領域を設定した二重ネストで,双方向ネスティ ングを施している.図-7に計算領域,表-3にその詳細を 示す.土地利用と標高データは,国土地理院が提供して いる1/10細分区画土地利用データと数値地図50mメッ シュ(標高)をそれぞれ使用している.また気象データ はNCEPのGlobal Final Analysesデータ(水平解像度1.0× 1.0°,時間解像度6時間)を用いる.

(2) 計算結果

図-8,9に、東京における冬季と夏季の風速・気温のシ ミュレーション結果と観測結果(東京都大手町の気象官 署データ^{8,9})の比較、及び人工排熱を付加した場合と 東京湾SSTを考慮した場合の気温偏差を示す.シミュ レーション結果は、Kondo(1975)¹¹⁾の式を用い、中立を 仮定した高度補正を施し、気象官署の観測高度に合わせ ている.対象期間は、3(1)と同様に2006年12月11~20日、 2007年8月7~16日の10日間である.なお、シミュレー ションの助走時間は1日としている.シミュレーション は、NOSST、AHF_NOSST、AHF_TBSSTの3ケースを行っ た.NOSSTとは、外洋のSST(NGSST-O)の値を一定 値として組み込んだもの、AHF_NOSSTはNOSSTケース

Upper and Lateral boundary Radiation (short-wave) Radiation (long-wave) Turbulence

lateral · · · specified with relaxation zone

PBL····YSU scheme

表-3 計算領域設定

	Horizontal grid number (grid points)	Horizontal domain size (km)	Horizontal grid spacing (km)	Vertical grid number (grid points)	Time inclement (s)
Domain 1	80 x 88	400 x 440	5	28	30
Domain 2	140 x 145	140 x 145	1	28	6

に都市の人工排熱を付加したもの、AHF_TBSSTは NGSST-Oの一定値ではなく直接測定により得られた時 間変化を含む実際の東京湾のSSTと人工排熱を組み込ん だものを意味し、3ケースとも都市キャノピーモデルを 導入している¹²⁾.ここで、人工排熱は妹尾ら(2004)¹³⁾ によるデータセット(時間変化を考慮)を用い、温度と 湿度の移流拡散方程式中にソース項として付加し、大気 の最下層グリッドのみに排出されると仮定した.

図-8(a),図-9(a)より,風速・風向のシミュレーション結果は冬季,夏季ともに気象官署での観測値とほぼ同様の変動傾向を示しているが,冬季の気温は大幅に過小評価されている(図-8(b)).対象領域に存在する他の気象官署との比較から,東京,横浜,千葉などの都市域で過小評価の割合が高い傾向にある.冬季は都市の地表面温度が低く見積もられているなどの原因により,気温が過小評価されている可能性が考えられる.今後,用いる物理量スキームなどを詳しく検討し,モデルの精度を向上させる必要がある.

上述したような問題点があるが、今回はシミュレー ションを行った3ケースの比較から、実際の東京湾SST が都市の気温に与える影響および人工排熱の効果も併せ て考察する.

まず人工排熱に着目すると、人工排熱を付加すること により冬季で約0.6℃、夏季では約0.5℃の温度上昇が見 られた(図-8(c)、図-9(c)).妹尾ら¹³は夏季の東京に おける人工排熱の影響を検討しており、本結果とほぼ等 しい温度上昇率である.冬季は日射強制力が弱くなるた め、相対的に人工排熱が都市の温度上昇に及ぼす影響が 大きくなると言える¹⁴.

一方、実際の東京湾SSTをモデルに組み込んだ場合の

影響は、人工排熱ほど大きくないが、夏季では約0.1℃ 都市の気温が上昇している(図-9(c)).夏季は、外洋 の水温と比較して実際の東京湾SSTが上昇傾向にあり、 東京湾上での顕熱が負から正に転じたことで、都市の気 温が上昇したと考えられる.一方冬季は、都市の気温へ の影響はほとんどみられなかった.これは季節風により 北からの風が卓越しているため、東京湾SSTの温度変化 が都市の気温にあまり反映されなかったと思われる.

図-10(a)(b)に、東京湾央部における顕熱のシミュ レーション結果を示す. 冬季はSSTよりも気温の方が低 い. 3(2)で述べたように、実際の東京湾SSTが外洋の値 よりも低いため、気温とSSTの差が小さくなり、顕熱の 放出が減少している(図-10(a)). 夏季は気温と水温の 差があまり大きくなく, 顕熱の絶対量が少ないが, SST の与え方によって顕熱の正負が逆転することがあり、こ れが都市の気温の下降、上昇に影響を与えると考えられ る. 図-11に2004年12月と2005年7月に千葉波浪観測塔 (No.14) で観測された顕熱¹⁵⁾と、本研究で得られたシ ミュレーション結果(AHF TBSST及びAHF NOSST ケース)とを比較したものを示す.同時測定結果ではな いので風速との対応図とした.上述の通り、夏季は場の 状況により気温-水温差の正負が逆転しやすいため評価 が難しいが、正の顕熱が大となる冬季は、実際の東京湾 SSTを考慮した場合、観測により得られた顕熱放出量を

以上より、都市気象など比較的ローカルな問題を取り 扱う場合、隣接する水圏のSSTは重要なパラメータとな ることが示唆され、沿岸域における大気-海面相互作用 を見積もるには実際の沿岸域SSTを導入する必要性があ ると言える.

ほぼ評価できていると思われる.

5. 結論

2006年11月~2007年9月に渡り,東京湾内の14地点で 海表面温度(SST)と海上気温の直接連続測定を実施し, その結果をメソ気象モデルWRFに組み込み,東京湾SST が都市の気温および大気-海面相互作用に及ぼす影響を 検討した.本研究の結論は以下のとおりである.

- 東京湾内の水温分布は、冬季に湾口部、夏季に湾奥部が高温化し、海上気温も同様の分布傾向を示す. また、東京湾海上の大気はSSTの影響以上に陸域の大気の影響を強く受けていると考えられる.
- ② 直接測定による東京湾SSTは衛星観測の客観解析によるSSTと比べて明らかに大きな季節変化を示し、とりわけ冬季は7℃以上もの差が生じる.夏季は両者の差はそれほど大きくないが、日変化に着目すると実際の東京湾は2℃以上の大きな日較差が生じる日が多く、この点で客観解析データとは異なる.
- ③ シミュレーション結果から、東京湾SSTの実測値を 考慮することで、都市の気温が夏季に約0.1℃上昇 した.これは東京湾での顕熱放出量の変化が寄与し ているものと考えられる.しかしながら、シミュ レーションの再現性が十分ではなく、精度を高める ことが今後の課題である.

謝辞:本研究の実施にあたり,新日本環境調査㈱,第三 管区海上保安部,東京湾アクアライン管理事務所,千葉 港湾事務所にご協力頂いた.また,本研究は独立行政法 人科学技術振興機構の戦略的創造研究推進事業(代表: 神田学)及び特別研究員奨励費(課題番号:19009173) による助成を受けた.記して深甚の謝意を表したい.

参考文献

- 八木宏,石田大暁,山口肇,木内豪,樋田史郎,石井光廣: 東京湾及び周辺水域の長期水温変動特性,海岸工学論文集, Vol.51, pp.1236-1240, 2004.
- 安藤晴夫,柏木宣久,二宮勝幸,小倉久子,山崎正夫:東京 湾における水温の長期変動傾向について,海の研究,第12 巻 4号,pp.407-413,2003.
- 3) 木内豪:都市の水利用が公共用水域に及ぼす熱的影響の長期的変化-東京都区部下水道と東京湾を事例として-,水

工学論文集, 第47巻, pp.25-30, 2003.

- H. Yoshikado : Numerical Study of the Daytime Urban Effect and Its Interaction with the Sea Breeze, *J. Appl. Meteorol.*, 31, pp.1146-1164, 1992.
- 5) 藤部文昭,坂上公平,中鉢幸悦,山下浩史:東京23区にお ける夏季高温日午後の短時間強雨に先立つ地上風系の特徴, 天気,49, pp.395-405,2002.
- 小田僚子,森脇亮,神田学:東京湾における気温と海表面 温度の関係,日本気象学会2006年度春季大会講演要旨集, pp.141,2006.
- 7) 国土交通省 関東地方整備局:東京湾水環境再生計画
 (案) ~美しく豊かな東京湾のために~, pp.148, 2006.
- 8) 気象庁:気象庁月報 平成18年12月,9巻12号,2006.
- 9) 気象庁:http://www.data.jma.go.jp/obd/stats/etrn/index.php
- 10) 新世代海面水温開発グループ:外洋域新世代海面水温 http://www.ocean.caos.tohoku.ac.jp/~merge/sstbinary/actvalbm.cgi
- J. Kondo : Air-sea bulk transfer coefficients in diabatic conditions, Boundary-Layer Meteorol., 9, pp.91-112, 1975.
- 12) 日下博幸:次世代の領域気象モデルWRFへの都市モデルの導入、第6回非静力学モデルに関するワークショップ予稿、2004.
- 13) 妹尾泰史,神田学,木内豪,萩島理:潜熱割合を考慮した 人工排熱時空間分布の推計と局地気象に対する影響,水工 学論文集,第48巻, pp.169-174,2004.
- T. Ichinose, K. Shimodozono, K. Hanaki : Impact of anthropogenic heat on urban climate in Tokyo, Atmos. Environ, 33, pp.3897-3909, 1999.
- 15) 小田僚子,森脇亮,神田学:東京湾におけるエネルギー・ H₂O・CO₂フラックスの季節変化,水工学論文集,第50巻, pp.463-468,2006.