住宅街における熱収支とCO₂フラックスの年間 積算値

ANNUAL TOTALS OF ENERGY AND CO2 FLUXES IN A RESIDENTIAL AREA

森脇 亮¹・神田 学² Ryo MORIWAKI and Manabu KANDA

¹正会員 東京工業大学 理工学研究科土木工学専攻 (〒152-8552 東京都目黒区大岡山二丁目12-1) ²正会員 工博 東京工業大学 理工学研究科国際開発工学専攻(同上)

Based on one year of field measurements, we described the annual fluxes of energy and CO₂ at a residential area of Tokyo. The major findings are as follows. 1) The total of *Rn*, *H*, and *LE* was 2.36, 1.35, and 0.90 GJ m⁻², respectively. The latent heat flux *LE* was large despite the small areal fraction of natural coverage (trees and bare soil). The estimated local latent heat flux per unit natural coverage was two times larger than the available energy (*Rn*+*A*), which indicates that the 'oasis effect' was significant. 2) The annual CO₂ flux was upward due to fossil fuel consumption in houses and traffic and human bodily exhalations. The total CO₂ flux was 3352 gC m⁻² and was six times larger than the downward CO₂ flux at a typical temperate deciduous forest.

Key Words: Urban environment, Energy balance, CO₂ flux, Annual total, Global climate, FLUXNET

1. はじめに

地球温暖化などのグローバル気候変化に対し、地表か ら大気へのインパクトを評価するために、植生などの各 種陸上生態系では、世界各地でフラックスをモニタリン グするためのネットワーク(FLUXNET)が構築されて いる(例えば、Baldocchi et al. 2001^{1}). しかしながら, 我々の生活の拠点であり世界の人口の約半数が集中する 都市域においては、都市地表面と大気間におけるエネル ギー・物質交換および乱流輸送過程に対する理解が遅れ ている. 近年は都市域における熱収支計測の重要性への 認識が高まり、世界各地で現地観測プロジェクトが行わ れつつあるが(例えば, Bubble²⁾, ESCOMPTE³⁾, 琵琶 湖プロジェクト⁴など),長期間に及ぶ連続データはい まだ十分でない. 筆者らは、2001年5月から住宅街にタ ワーを建設してフラックスの長期連続計測を行い、これ まで晴天時のフラックス(森脇・神田、2003⁵⁾)や水文 陸面パラメータ(森脇ら, 2002⁶⁾)について報告してき た.本報では、観測データに基づいて熱収支とCO,フ ラックスの年間収支を算定し、都市が大気圏に与えるイ ンパクトについて調べた.都市域におけるフラックスの

年間収支はこれまで示された例がなく他都市との比較は 難しいが、同緯度に位置する森林の結果と比較すること で、都市域がもつ気候学的役割を定量的に議論した.ま た実測された住宅街全体の潜熱・CO₂フラックスに対す る、①庭木、②人工材料(コンクリートとアスファル ト)、③自動車からの排出、④家庭における燃料消費、 ⑤人間からの排出、を関連データから推定し、それぞれ のフラックスへの寄与度を検討した。

2. 観測サイトの概要と解析手法

観測場所の情報や解析手法については既存の論文^{5,0}に 詳しく説明されているので、ここでは概要のみを示す.

(1) 観測サイト

観測タワーの設置点は東京都大田区久が原である.周辺の地域は1km四方に渡り高さのほぼ均一な低層住宅地 (平均高さ7.3m)が広がっている(図-1).建蔽率は 33%程度であり西欧に比べると比較的建物が密集した住 宅街である.観測サイトの幾何パラメータを表-1にまと めた.

 図-1 観測地域周辺の航空写真(139°41'E,
35°34'N),図中の白丸は、夏季・冬季の卓越風向
に対する代表的なフラックスソースエリア (Schmid (1994)⁷⁾のモデルを用いて算定した)

(2) 計測手法

測定項目と測定機器の一覧を表-2に示す.都市キャノ ピーの約4倍の高度(地上29m)に三次元超音波風速温 度計(Metek社; USA-1)とオープンパスCO₂/H₂Oアナ ライザー(Li-cor社; LI-7500)を用いて,3次元風速・ 気温・CO₂濃度・水蒸気濃度の瞬間値を8Hzのサンプリ ング周期で計測した.タワーによる流れ場の乱れによる フラックス観測誤差を最小限に抑えるため、これらの測 定機器はタワー頂上部に設置している.高度25mには、 日射計・赤外放射計を設置して鉛直上向きと下向きの短 波放射・長波放射を計測した.地上には降雨の有無を確 認するための雨量計を設置した.測定データはデータロ ガー(Campbell社; CR10X)に一時的に収録し、2分間 隔で地上に設置したノートPCにデータを保存した.

(3)データ解析手法

a)フラックスと熱収支

顕熱・潜熱・ CO_2 フラックスの算出には渦相関法を用 いた.フラックス算出の乱流統計時間は 60 分で、風速 計の傾き補正のための傾度補正⁸⁾を行っている.水蒸気 と CO_2 フラックスの算出には、空気の密度変化による 誤差を補正するために WPL 補正⁹⁾を加えている.放 射・熱収支の解析は以下のように行った.正味放射量 Rnは次式のように放射より算出される.

$$Rn = S^{\downarrow} - S^{\uparrow} + L^{\downarrow} - L^{\uparrow} \tag{1}$$

ここで、 S^{\perp} は全天日射量、 S^{\uparrow} は上向き短波放射量、 L^{\perp} は大気放射量(下向き長波放射量)、 L^{\uparrow} は地表面赤外放 射量(上向き長波放射量)である. また熱収支式は次式、

$$Rn + A - G = H + LE + O \tag{2}$$

で表される(図-2に熱収支の概念図を示す). 正味放射 量Rnと人工排熱量Aを足したものから地中熱流量Gを差 し引いたものは,顕熱Hと潜熱LE,および,測定高度と 地表間の空気貯熱量Qに変換される.

表-1 都市の土地利用パラメータ

平均建物高さ	\mathbf{z}_{H}	7.3m
建蔽率	λ_{p}	32.6%
緑被率	$\lambda_{\rm V}$	20.6%
不浸透面被覆率	λ_{I}	38.3%
(アスファルト)		(26.1%)
(コンクリート)		(12.1%)
裸地面被覆率	λ_{G}	8.5%

表-2 気象測定項目と測定機器

測定項目	測定機器	サンプリング
		周波数・高度
		・解析手法
顕熱・潜熱・CO ₂	3次元超音波風速温度計	8Hz • 29m •
フラックス	(Metek社; USA-1)	渦相関法
	オープンパスアナライザー	
	(Li-Cor社; LI-7500)	
全天日射量	ネオ日射計(英弘精機,MS-	42) $1 \text{Hz} \cdot 25 \text{m} \cdot$
上向き短波放射量	短波放射計(英弘精機, MS-	62) 平均
大気放射量	赤外放射計(英弘精機,MS-	202)
上向き長波放射量	赤外放射計(英弘精機,MS-	201)
雨量	転倒ます雨量計	—
	(英弘精機, MW-010)	

図-2 (a)熱収支と(b)CO2フラックスの概念図

都市では屋根面,壁面,道路,庭などから構成されるため,Gを正確に測定することは不可能である。そこで本研究では、測定された*Rn、H、LE、Qと*東京の人工廃熱データベース(妹尾ら,2004¹⁰)から計算したAを式(2)に代入することにより、残差項としてGを算定した。

b) 年間収支の算定

本研究では、欠測の少ない2001年5月1日から2002年4 月30日までのデータを使用して年間のフラックスを評価 する.しかしながら、降雨やセンサー不良による欠測は 避けられず、年間積算に利用できるデータは全体のデー タセット数のうち71%である.そこで残りの欠測分は以 下のように補完を行った.降雨によるデータ欠測(全体 の10%)は対象日の前後2週間内に存在する曇天日の データを用いて補完した.またセンサー不良によるデー タ欠測分(全体の19%)は該当日に近い気象条件を持つ 日の時間データを用いて補完した.

c)キャノピー構成要素の寄与度

実測された住宅街全体のフラックスに対する都市キャ ノピー構成要素の寄与度の推定方法は,基本的に Moriwaki and Kanda (2004)¹¹⁾ に準じているため,以下で は概要のみ述べる.

①庭木と土壌

本観測エリアの緑被面積比は約20%である.ここでは、 同緯度の落葉広葉樹林におけるフラックス観測結果

(Baldocchi and Wilson, 2001¹²⁾) に緑被率を乗じること での潜熱とCO₂フラックスの寄与を算出した.ここでは 樹種および環境に対する植物の応答性が同じであると仮 定してフラックスを見積もることにする.

裸地面における潜熱や CO_2 は土壌水分や生物量などに依存するためその評価は難しいが、裸地面被覆率が小さいことを鑑みて、本研究では裸地面蒸発は可能蒸発量 [$PE=1.26 s/(s+\gamma)$ (Rn+A-G)、ここでsは気温に対する飽和 比湿の変化率、 γ は空気熱容量に対する水の気化潜熱の 比] (Priestly and Taylor, 1972¹³) に等しいと仮定した.また裸地の CO_2 フラックスは無視できると大胆に仮定した. ②人工材料(コンクリートとアスファルト)

コンクリートは大気中のCO₂を吸収して中性化する性質 があるが、その速度は非常に遅く気象学的に見て無視で きる.一方、潜熱については次のように算出した.コン クリートとアスファルト片の屋外暴露実験を行った.1 日1回コンクリートの質量を計測し、その重量変化から 潜熱フラックスを算定した.

③自動車交通からの人工排出量

自動車交通からの排出については、東京都環境局がまと めた東京都区部(対象面積439 km²)の時間帯別走行量 に排出原単位を乗じて求めた.

④家庭からの人工排出

家庭からのCO₂排出源は、化石燃料(ガスや灯油)の直接消費量(榊原、2000¹⁴⁾)に排出原単位を乗じて求めた。人工的に排出される水蒸気の可能性について、地域 冷暖房システムが導入されている商業地域では、冷却塔 からの水分蒸発による人工潜熱が大きいことが神田ら (1997)¹⁵、妹尾ら(2004)¹⁰によって指摘されている。しか し本観測対象地域である久が原地区にはこのような地域 冷暖房システムは存在せず、大規模な道路散水なども行 われていないため、この影響は無視できると考えられる。 ⑤人体からの排出

人間の呼吸や発汗によるフラックスへの寄与は以下のように求めた. 体重60 kgの人が呼気, 汗によって放出する水蒸気は一日に約0.8 Lである. また人間は呼気により一人あたり8.87 mg s⁻¹人⁻¹のCO₂を放出している. これに久が原地域の人口密度 $(1.1 \times 10^2 \ \text{人m}^2)$ を乗じて, それぞれの寄与度を推定した.

3. 結果と議論

エネルギー・CO₂フラックスの季節変化を簡単に述べ ておく.熱収支とCO₂フラックスの月別変化を図-3に示 す.顕熱HはRnの季節変化に応じて変化し、夏季のHは

冬季のHの3~4倍である. 潜熱LEは顕熱ほどではないが 熱収支の中で大きな割合である. 人工排熱Aは冬季にRn と同程度の大きさであり,熱収支の中で重要なエネル ギーソースになる. 残差から求めたGは年間を通して正 の値になる. この理由は次節で説明する. CO₂フラック スは年間と通して上向きであり,その値は冬に大きく夏 に小さい. 発生源に関する検討は(5)節で行う.

表-3にエネルギー・CO₂フラックスの年間収支を示す. 比較のため、森林の計測によって得られた年間積算値も 合わせて示した.森林のデータはFLUXNETの観測点の 一つであり、本対象地域とほぼ同緯度にある落葉広葉樹 林 (Oak Ridge, USA、35°57'N)の観測データ (Wilson and Baldocchi, 2000¹⁶; Baldocchi and Wilson, 2001¹²)を 用いた.

(1)年間の熱収支とインバランス問題

年間のRn, H, LEはそれぞれ 2.36, 1.35, 0.90 GJ m⁻² であった. 潜熱に比べて大きい顕熱が放出されているの は都市の特徴であり、森林とは対照的である. 妹尾ら¹⁰⁾ による人工排熱データベースを用いて算出した人工排熱 Aの年間積算値は0.49 GJ m⁻² である. 年間の熱収支では G=O=0となるため、熱収支はRn+A=H+LEとなるはずで あるが、実際にはRn+A>H+LEとなっている.これは 「インバランス問題」としてよく知られており、点計測 によるフラックス評価には避けられない問題となってい る(例えば,神田ら(2002)¹⁷⁾).インバランスの割合 (Rn+A)/(H+LE)は約0.8であり、既存の報告例と同程度で ある(例えば, Wilson et al., 2002¹⁸⁾; Lee, 1998¹⁹⁾; Kanda et al., 2004²⁰⁾). 特にWilson et al. (2002)¹⁸⁾ は森林における 長期観測に基づいて年間フラックスを検討した結果、イ ンバランス割合が約0.8であると指摘しており、本研究 の結果と一致している.一方,木内(2003)²¹⁾は家庭での 給湯などを通して水圏へ流出する熱量が都市域で発生す

	住宅街 (本研究)	落葉広葉樹林 (Wilson and Baldocchi (2000),
		Baldocchi and Wilson (2001))
降水量 P(mm)	1722	1454
気温 (℃)	16.0 at 29 m	14.9
% 実測データが占める割合の百分率	71%	78%
日射量 S _{down} (GJ m ⁻²)	4.69	5.43
正味放射量 Rn (GJ m ⁻²)	2.36	3.04
顕熱 H(GJ m ⁻²)	1.35	1.05
潜熱 LE (GJ m ⁻²)	0.90	1.39
蒸発量 (mm)	369.5	567.2
CO ₂ フラックス (gC m ⁻²)	3352	-460 to -620
人工排熱 A (GJ m ⁻²)	0.49	

表-3 熱収支・CO2フラックスの年間収支

表-4 年間の潜熱・CO2フラックスに対する各構成要素の寄与

	潜熱 (GJ m ⁻²)	CO ₂ フラックス (gC m ⁻²)
実測に基づく積算値	0.90	3352
	o 10	
植生・土壌	0.40	-110
アスファルト・コンクリート	0.12	-1
自動車交通量	0	2838
家庭における燃料消費	0	2442
人体	0.01	849
寄与度の合計	0.53	6018

る人工排熱の1割程度にも達することを指摘している. 熱収支式を満たさないエネルギーの一部は水圏へ流出し ていることも十分に考えられる.

(2) 都市植生のオアシス効果

顕熱・潜熱へのエネルギー配分率であるボーエン比 Bo=H/LEは1.5である.夏季の日中において、都市植生に はオアシス効果が働き、単位面積あたりの庭木ではRnと 同等かそれ以上の潜熱が放出されることが指摘されてい るが(森脇・神田、2003⁵⁾)、年間値でも都市域から多 くの潜熱が放出されていることがわかった。

Hagishima et al. (2004)²²は、ポット植生の配置密度を変 えてオアシス効果の定量的評価を試み、単木の場合1.5 倍程度の蒸発促進が見られることを実証している. 高温 乾燥化した住宅街に樹木が点在する環境下では植物体内 と外界との水蒸気圧差(飽差)が大きくなるため植物は 水分を失いやすい. つまり高いオアシス効果によって庭 木から大量の潜熱が大気に放出されていると考えられる.

本研究では降雨中のデータは曇天時のデータで置き換 えてフラックスを年間積算しているため、潜熱の積算値 を過小評価している可能性がある.実際には降雨中の遮 断蒸発によりもっと大きな潜熱が発生している可能性も あり、年間の水収支をさらに精度良く評価するためには 降雨中の潜熱フラックスの評価手法の確立が必要である といえる.

(3) 本地域の気候学的特徴

日射量に対するRnの比(Rn/S)は0.50である.日射エネルギーの約半分が地表面フラックスに利用できるエネルギーに換算されている.この値は、森林の値0.56に比べると少し小さい値である.都市のRn/Sが小さいという結果は、都市の表面では森林に比べて温度が高くなるため多くの長波放射エネルギーを大気に放出することが原因になっていると考えられる.

放射乾燥度 RDI=Rn/LP (Radiative Dryness Index, Budyko (1974)²³)) は陸面の湿り具合を示す気候学的指標 としてよく用いられている (LPは降水量Pを蒸発させる のに必要な熱量, RDI <1 のとき降水は土壌を湿った状 態に保ち続ける).本研究で得られた RDI は 0.56であ り,湿潤な気候条件下にこの地域が存在することを意味 している.このような気候条件下では植物への水分供給 が十分であり水ストレスが生じないため,前節で述べた ような植生のオアシス効果が顕著であったと考えられる. 一方,年間の蒸発量と降雨量はそれぞれ228 mm と1362 mmだった.これから計算される蒸発・降水比 (E/P) は 0.21であり,森林の値 (0.39) と比べて半分程度であ る.これは湿潤な気候にあっても、降水の大部分が流出 してしまうことを意味しており、都市の不浸透化と下水 道システムの発達を示唆する興味深い結果である.

(4)年間のCO₂フラックス

人為起源のCO₂発生により都市域はCO₂の発生源に なっており、その定量的把握が地球温暖化の予測上急務 となっている.本地域のように植生が混在するような住 宅街ではその評価は難しく、現地計測による直接計測が 必要である.計測されたフラックスを年間積算した結果、 本地域はCO₂の発生源になっており、その大きさは年間 で3352 gC m² yr⁻¹であることがわかった.同緯度の落葉 広葉樹林の吸収量が-450 to -620 gC m² yr⁻¹ である (Baldocchi and Wilson, 2001¹²⁾)ことを考慮すると、本地

域で発生したCO2を森林に吸収させるためには、約6倍の面積の森林が必要であることが明らかになった.

(5) 都市キャノピー構成物の寄与度に関する検討

最後に潜熱・CO₂フラックスの年間積算値と、都市 キャノピーを構成する各要素(庭木,人工材料,自動車, 家庭における燃料消費,人間の呼気)の寄与度を検討す る(表-4).

a)潜熱

自動車交通,家庭からの排出,人体からの放出はほとんど無視できる.一方,主要な蒸発源として考えられるのは,植生と土壌である.人工材料からの蒸発も無視し得ない大きさ(0.12)であり,意外にもコンクリートが降雨時に水を吸収し,水分の蒸発源になっていることがわかった.推定した寄与度の合計値は0.53 GJ m²となるが,この値は実測値0.90 GJ m²の約半分程度にしかならない.3(2)節で述べたように,都市植生にはオアシス効果が働く.一様な植生におけるフラックスデータに緑被面積を乗じただけでは,オアシス効果が働く都市植生の蒸発量を過小評価してしまう可能性があるので注意が必要である.

b) CO₂フラックス

主要な発生源は、自動車交通、家庭における燃料消費、 人体の呼気である. 植生・土壌は吸収源として作用する がその値は小さく、都市域のCO₂フラックスは人為起源 のCO₂発生に強く影響を受けている. 図-3で示したよう にCO₂フラックスは季節変化し、冬に大きく、夏に小さ い. 交通量や人体からの排出は年間を通じてほとんど変 化しないため、フラックスの季節変化は説明できない. この季節変化を説明しうるのは、植生によるCO₂吸収と 家庭からの排出である. 冬季は家庭では暖房や給湯用に 化石燃料の直接消費(ガスや灯油)が多くなるためCO₂ の排出量も多くなる.

各寄与度の合計値は6018 gC m²であり,実測値3352 gC m²より過大に評価されている.各構成要素の寄与度 はラフな見積もりであり必ずしも実測値に一致する必要 はないが,この差を説明する要素としては次の2つが考 えられる. 1つはCO₂フラックスの計測値がインバラン ス問題の影響により過小に評価されていることである. 神田ら(2002)¹⁷ は点計測による熱フラックスが過小評価 される原因として,大規模な乱流組織構造による平均流 の存在を指摘しているが,点計測によるCO₂フラックス にも同様なメカニズムによる過小評価が生じていること は十分に考えられる. もう1つは都市植生によるCO₂吸 収が推定値よりも大きいかもしれないことである. 例え ば,オアシス効果の場合,乾燥した都市環境に点在する 植生からの蒸発が大きくなるが,これと全く同様のメカ ニズムにより,高いCO₂濃度の環境下におかれた都市植 生がCO₂を効率よく吸収することは十分に考えられるこ とである. ただしCO₂ガスの吸収速度は気相での拡散だ けで決まるのではなく植物の生理機能にも影響される²⁴⁾ ため,この考察には注意が必要である.

4. 結論

放射・熱・水・CO₂フラックスの連続計測により,住 宅街におけるフラックスの年間収支を評価した結果,以 下のことが主要な結論として得られた.

 年間のRnは 2.36 GJ m² で, 1.35 GJ m² (約60%) が顕熱Hに, 0.90 GJ m² (約40%) が潜熱LEに配分され ている.都市域でも潜熱が多く放出されているのは,都 市植生にオアシス効果が働くためである.都市域の水収 支を把握する上で,単木からの蒸発,降雨中の遮断蒸発 の正確な評価が今後の大きな課題である.

2) CO_2 フラックスは人為起源の発生源(自動車交通, 家庭における燃料消費,人体の呼気)に大きく影響を受け,年間の CO_2 発生量は $3352 \text{ gC m}^2 \text{ yr}^1$ である.森林の フラックスデータと比較したところ,本地域で発生した CO_2 を吸収するためには約6倍の面積の森林が必要である.

将来的に都市域の拡大が予想される中,都市域がグ ローバル気候に及ぼすインパクトをより正確に把握・予 測するために,様々な都市にフラックスネットを整備し 知見を集積することが重要である.

謝辞:本研究は文部省科学研究費補助金基盤研究(B) (2)(課題番号:15360262)および若手研究(B)(課 題番号:16760404),科学技術振興機構・戦略的創造研 究(代表:神田学)による財政的援助を受けた.また観 測場所の提供には、宗教法人カトリックお告げのフラン シスコ修道会(代表:釘宮禮子様)に多大なるご協力を いただいた.ここに合わせて謝意を表す.

参考文献

 Baldocchi, D., Flage, E., Gu, L., Olson, R., Hollinger, D., Running, S., Anthoni, P., Bernhofer, C., Davis, K., Evans, R., Fuentes, J., Goldstein, A., Katul, G., Law, B., Lee, X., Malhi, Y., Meyers, T., Munger, W., Oechel, W., Paw U, K.T., Pilegaard, K., Schmid, H.P., Valentini, R., Verma, S., Vesala, T., Wilson, K., and Wofsy, S.: FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. *Bull. Amer. Meteor. Soc.*, 82, pp.2415-2434, 2001

- Vogt, R., Christen, A., Rotach, M.W., Roth, M., and Satyanarayana A.N.V.: Fluxes and profiles of CO₂ in the urban roughness sublayer. *Theor. Appl. Climatol.*, 2004, in press.
- Lemonsu, A., Grimmond, C. S. B., and Masson, V.: Modeling the surface energy balance of the core of an old Mediterranean city: Marseille. *Journal of Applied Meteorology*, 43, pp. 312–327. 2004.
- 田中賢治・中北英一・池渕周一:琵琶湖プロジェクトの陸 面過程モデリング,水工学論文集,42, pp.79-84,1998.
- 5) 森脇亮,神田学:都市接地層における放射・熱・水・CO₂フ ラックスの長期連続観測,水文・水資源学会誌, 16, pp.477-490,2003.
- 6) 森脇 亮,神田 学,渡邊倫樹,松永和章:都市域の陸面パ ラメーターの算定,土木学会水工学論文集,46, pp.91-96, 2002.
- Schmid, H.P.: Source areas for scalars and scalar fluxes. *Bound.-Layer Meteor.*, 67, pp.293-318., 1994
- McMillen, R.T.: An eddy correlation technique with extended applicability to non-simple terrain., *Boundary-Layer Meteorol.*, 43, pp.231-245, 1988.
- Webb, E.K., Pearman, G.I., and Leuning, R.: Correction of flux measurement for density effects due to heat and water vapour transfer. *Quart. J. Roy. Meteor. Soc.*, 106, pp.85-100, 1980.
- 10) 妹尾泰史,神田学,木内豪,萩島理:潜熱割合を考慮した 人工排熱時空間分布の推計と都市局地気象に対する影響,土 木学会水工学論文集,48(1), pp.169-174, 2004.
- Moriwaki, R. and Kanda, M.: Seasonal and diurnal fluxes of radiation, heat, water vapor and CO₂ over a suburban area. *Journal of Applied Meteorology*, 43, pp.1700-1710, 2004.
- Baldocchi, D., and Wilson, K.: Modeling CO₂ and water vapor exchange of a temperate broadleaved forest across hourly to decadal time scales. *Ecol. Model.*, 142, pp.155-184, 2001.
- 13) Priestley, C.H.B. and Taylor, R.J.: On the assessment of surface

heat flux and evaporation using large-scale parameters. *Mon. Wea. Rev.*, 100, pp.81-92, 1972.

- 14) 榊原幸雄:家庭部門のエネルギー消費実態について、エネ ルギー経済、26, pp.17-35, 2000.
- 15)神田学,高柳百合子,横山仁,森脇亮:銀座オフィスビル 街における熱収支特性,水文・水資源学会誌,10, pp.329-336,1997.
- 16) Wilson, K. and Baldocchi, D.: Seasonal and interannual variability of energy fluxes temperate deciduous forest in North America. *Agric. For. Meteor.*, 100, pp.1-18, 2000.
- 17) 神田 学, 稲垣厚至, マルコス オリバー レッツェル, ジークフリード ラッシュ:点計測乱流量の空間代表性に 関する理論的検討-インバランス問題の物理的解釈-,土 木学会水工学論文集,46, pp.97-102,2002.
- 18) Wilson, K., Goldstein, A., Flage, E., Aubinet, M., Baldocchi, D., Berbigier, P., Bernhofer, C., Ceulemans, R., Dolman, H., Field, C., Grelle, A., Ibrom, A., Law, B.E., Kowalski, A., Meyers, T., Moncrieff, J., Monson, R., Oechel, W., Tenhunen, J., Valentini, R. and Verma, S.: Energy balance closure at FLUXNET sites, *Agric. For. Meteor.*, 113, pp.223-243, 2002.
- Lee, X.: On micrometeorological observations of surface-air exchange over tall vegetation. *Agric. For. Meteor.*, 91, pp.39-49, 1998.
- 20) Kanda, M., Inagaki, A., Letzel, M.O., Raasch, S., and Watanabe, T.: LES study of the energy imbalance problem with eddy covariance fluxes. *Bound.-Layer Meteor.*, 110, pp.381-404, 2004.
- 21) 木内豪:都市の水利用が公共用水域に及ぼす熱的影響の 長期的変化―東京都区部下水道と東京湾を事例として―, 土木学会水工学論文集,47, pp.25-30, 2003.
- 22) Hagishima, A., Narita, K.-I., and Tanimoto, J.: Field experiment on the oasis effect of urban areas using potted plants. Preprints, Fifth conference on urban environment, Vancouver, Canada, Amer. Meteor. Soc. 2004.
- Budyko, M.I.: Climate and Life, Academic Press, New York, pp.508, 1974.
- 24) 大政謙次編: 植物の計測と診断, 朝倉書店, pp.239, 1995.

(2004.9.30受付)

論文の要点説明書

論文題目: 住宅街における熱収支とCO2フラックスの年間積算値

著 者: 森脇 亮、神田 学 (東京工業大学)

住宅街におけるフラックスの長期観測データを用いて、住宅街における熱収支とCO₂フ ラックスの年間収支を算定した。森林など自然生態系で行われているフラックス観測網 (FLUXNET)では同様の研究が行われているが、都市域ではこのような世界で初めての 試みである。本研究では都市が大気圏に与えるインパクトについて定量的に議論し、同緯 度に位置する森林の結果と比較することで、都市域がもつ気候学的役割・CO₂収支への影 響を明らかにした。さらに庭木、家屋、自動車交通、人体、人工被覆の寄与を算出し、年 間のフラックスに対する寄与を評価した。本論文は水文・水資源学会誌に掲載された論文 (森脇・神田、2003)と同じデータソースを用いているが、それが晴天日のフラックスの 日変化に主に着目しているのに対し、本論文は年間のフラックス積算値を主に議論してい る点で該当論文とは性格を異にしている。

本論文の主要な結論は以下のとおりである。

1)年間のRn は 2.36 GJ m⁻² で、1.35 GJ m⁻²(約60%)が顕熱に、0.90 GJ m⁻²(約40%)
が潜熱に配分されている。都市域でも潜熱が多く放出されているのは都市植生にオアシス
効果が働くためである。

2) CO_2 フラックスは人為起源の発生源(自動車交通、家庭における燃料消費、人体の呼 気) に大きく影響を受け、年間の CO_2 発生量は3352 gC m⁻² yr⁻¹になる。本地域で発生した CO_2 を吸収するためには約5倍の面積の森林が必要である。

将来的に都市域の拡大が予想される中、都市域がグローバル気候に及ぼすインパクトをより正確に把握するため、都市域でもフラックス観測網の整備が急がれる。都市版フラックスネットの第一歩として、熱収支とCO₂フラックスの年間収支を初めて示したことは意義があり、今後の都市気候研究に重要な資料を提供すると思われる。