

RESULTS for METHOD2 Figure 8 (a) $d / H_{\text {ave }}$ versus λ_{p} with Macdonald equation (Eq. (8)), and (b) same as Fig.8a but replacing $H_{\text {ave }}$ with $H_{\max }$, i.e., $d / H_{\max }$ versus λ_{p}. Filled circles: real urban surfaces from LES-Urban, grey circles: simple arrays with variable building height from LES-Urban, open circles: simple array of cubes from LES-Urban, and triangles: simple arrays with variable building height from the experiments by Hagishima et al. (2009). The solid line shows the Macdonald equation (8).

RESULTS for METHOD2 Figure 9 (a) $z_{0} / H_{\text {ave }}$ versus λ_{p}, with Macdonald equation (9), and (b) same as Fig.9a but replacing $H_{\text {ave }}$ with $H_{\max }$, i.e., $z_{0} / H_{\max }$ versus λ_{p}. Filled circles: real urban surfaces from LES-Urban, grey circles: simple arrays with variable building height from LES-Urban, open circles: simple array of cubes from LES-Urban, and triangles: simple arrays of buildings with variable height from the experiments by Hagishima et al. (2009). The solid line shows Macdonald equation (9) for $\lambda_{f}=\lambda_{p}$. The dotted line shows Macdonald equation (9) for $\lambda_{f}=2 \lambda_{p}$.

RESULTS for METHOD2 Figure 10 Applicability of new aerodynamic parametrizations in the case of $\sigma_{H}=0$ (homogeneous buildings) by Method 1. (a) $d / H_{\max }$ versus λ_{p}, with the new parametrization Eq. (11) as the lower limit of $X=1$ in Eq. (10). The solid line shows Eq. (11). The "staggered" (open circles) and "square" (open squares) points are from LES-Urban, "DNS" (open triangles) is from Leonardi and Castro (2010), "EXP(Hagishima)" is from Hagishima et al. (2009), and "EXP(Cheng)" is from Cheng et al. (2007). (b) $z_{0} / H_{\text {ave }}$ versus λ_{p} with the new parametrization (13) as the lower limit of $Y=0$ in Eq. (12). The solid line shows Eq. (13). The symbols are all the same as in (a).

RESULTS for METHOD2 Figure $11 d / H_{\max }$ versus $\left(\sigma_{H}+H_{\text {ave }}\right) / H_{\max }$ with the new parametrization by Method 1. The lines show Eq. (10), while open symbols are from LES-Urban, shaded symbols are from Hagishima et al. (2009), and filled symbols are from Zaki et al. (2011). The plots at $X=1$ are consistent with Fig.10a.

RESULTS for METHOD2 Figure $12 z_{0} / z_{0}(\mathrm{mac})$ versus $\lambda_{p} \sigma_{H} / H_{\text {ave }}$ with the new parametrization by Method 1. Solid line: Eq. (12), filled circles: realistic geometry of LES-Urban, grey circles: variable height of LES-Urban, open circles: cubes of LES-urban, open triangles: Hagishima et al. (2009), and grey triangles: Zaki et al. (2011). The plots at $Y=0$ are consistent with Fig.10b.

RESULT for METHID2 Figure 13 Performance of new aerodynamic parametrizations by Method 2. (a) Displacement height normalized by maximum building height ($d / H_{\max }$) from LES-Urban (x-axis: observation) versus that from new parametrization (y-axis: prediction by Eq. (10)). (b) Roughness length normalized by average building height $\left(z_{0} / H_{\text {ave }}\right)$ from LES-Urban (x-axis: observation) versus that from new parametrization (y-axis: prediction by Eq. (12)).

