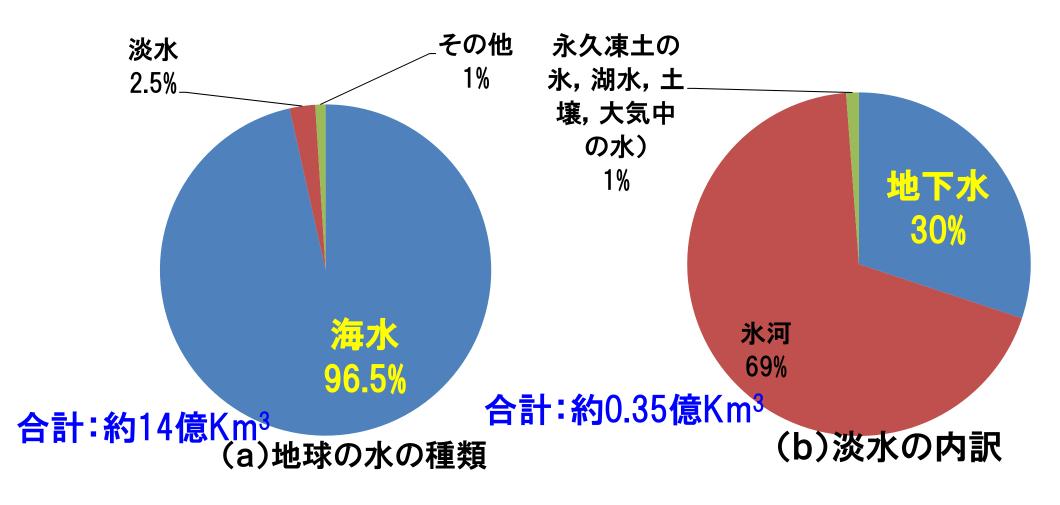
東京工業大学「工学と国際開発」


コンクリートがらの発生量(被災3県)

	災害廃棄物(万トン)	津波堆積物(万トン)	コンクリートがら (万トン)	
岩手県	374	153	約 180	
宮城県	1,060	717	約 180	
福島県	171	166	X	
計	1,605	1,037	400万トン以上	

災害廃棄物, 津波堆積物: 2013年9月末現在の値

地球上の水資源

I.A.Shiklomanov: Assessment of Resources and Water Availability in the World:WMO ed,1996のデータを参照

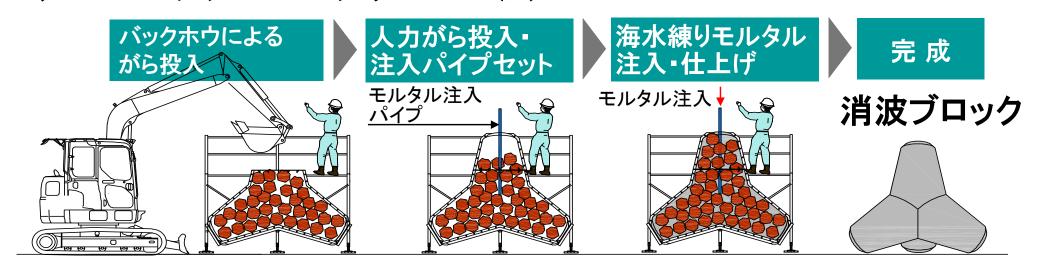
利用可能な水: 0.1億km³(全水量の0.8%)

開発の背景

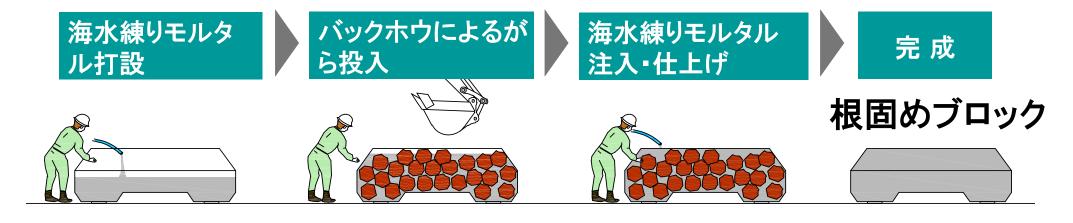
- 1. 震災による膨大なコンクリートがらの発生(400万トン以上)
- 2. 甚大な被害を受けた港湾施設の復旧⇒多量のコンクリートが必要
- 3. 東北地方のコンクリート用骨材の不足

コンクリートがらの有効利用の方法

- 1 有効利用 コンクリートがらを有効利用し、骨材不足へ対応
- ②工期短縮 練混ぜ水に海水を用い、早期強度が増大し、脱型時期を短縮
- ③省力化 コンクリートがらを大割りで利用し、処理工程を省力化 (プレパックドコンクリート、ポストパックドコンクリート工法の適用)



施工方法

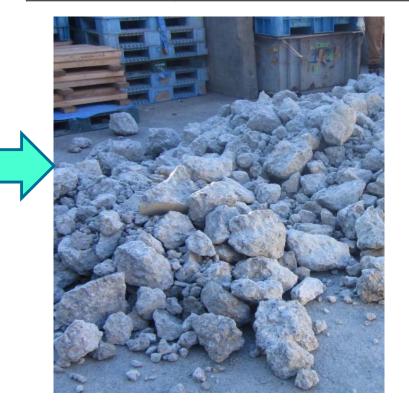


使用材料: 骨材: 大割がら(300~500mm). 注入材料: 海水練りモルタル

A)プレパックドコンクリート工法

B)ポストパックドコンクリート工法

室内試験 (2011.12~検討開始)


使用材料

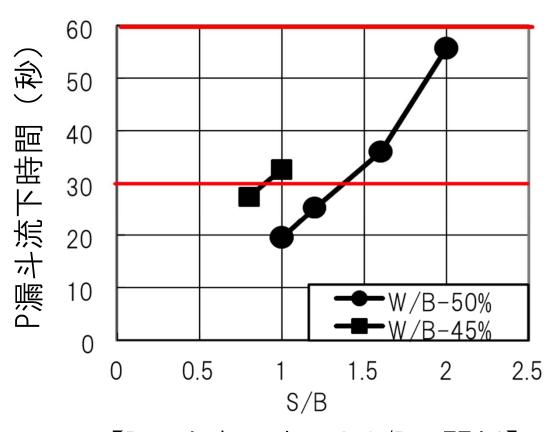
	記号	材料		
	水	海水:相馬港より採取 真水:水道水		
	セメント	高炉セメントB種		
注入モ	混和材	膨張材(石灰石系)		
ルタル	細骨材	砕砂(密度2.66g/cm3)		
	プロイーナ ル	高性能AE減水剤		
	混和剤	アルミニウム粉末 (反応遅延型)		
粗	骨材	コンクリートがら (相馬港で倒壊した構造物 を破砕, 大割り)		

コンクリートがらの性質

項目	試験値
寸 法	300~500mm
密度	2.37
吸水率	7.18%
圧縮強度	37.1N/mm ²

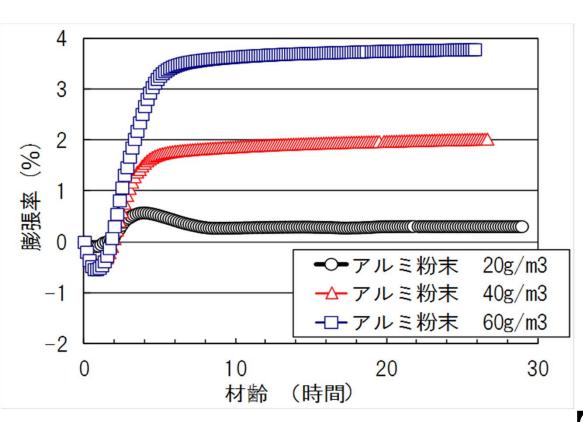
注入モルタルの試験項目と目標性能

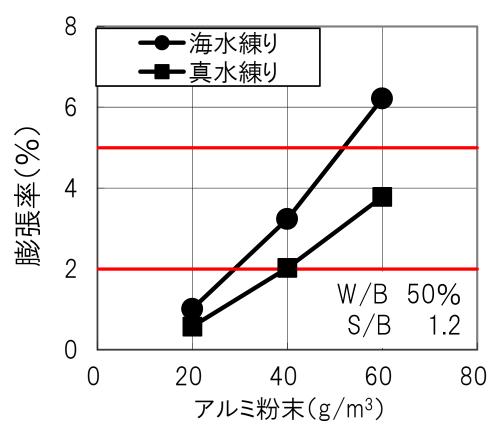
試験項目	目標値	備考
P漏斗流下時間	30~60秒	JSCE-F521
ブリーディング率	3時間で3%以下	JSCE-F522
空気量	10±1.5%	JISA1128
膨張率	2~5%	JSCE-F522
圧縮強度	40N/mm²程度	材齢28日


- ·P漏斗流下時間:がらの空隙が大きいことから60秒まで延長
- ・凍結融解対策のため空気量を10±1.5%と設定
- ·室内試験結果より圧縮強度は40N/mm²に設定

モルタルの流動性試験

Pロート試験


【P漏斗流下時間とS/Bの関係】


- •S(砂)/B(セメント):1.2~2.0で適当な流動性確保
- ・高性能AE減水剤を用いて、流動性を向上

狭い間隙に流動・充填

膨張率試験

【膨張率とアルミ粉末添加量の関係】

アルミニウム粉末: 40g/m3使用し, ブリーディング防止

がらと注入モルタルの密着性向上(間隙抑制)

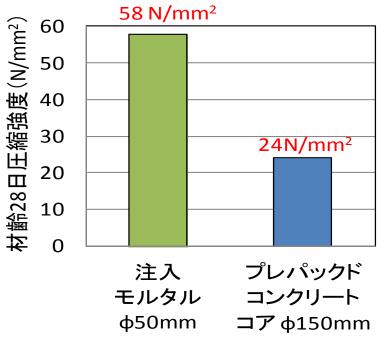
注入モルタルの配合(暫定)

				È	単位量(kg/m³))		試験結果		
配合	練混ぜ水	W/C (%)	S/B	W	С	Ex	S	Al (g/m³)	ブリー ディング 率(%)	空気量 (%)	
1	海水	50.0	1.2	352	663	40	844	40	1.2	8.3	
2	真水	50.0	1.2	352	663	40	844	40	2.4	9.0	

室内試験(プレパックトコンクリート)

【プレパックドコンクリートによるブロック打設実験】

80cm角のプレパックドコンクリートを製造し、施工性、充てん性、コンクリートがらの容積率および圧縮強度を確認

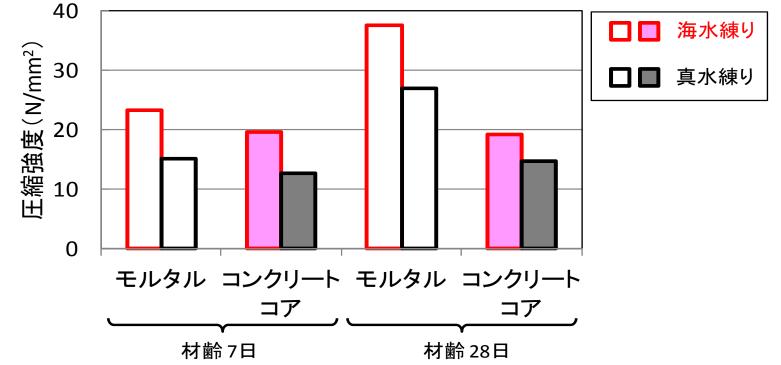

■打設概況

■ 充てん状況

■ 圧縮強度

■コンクリートがらの容積率 約50% (1.2ton/m3)

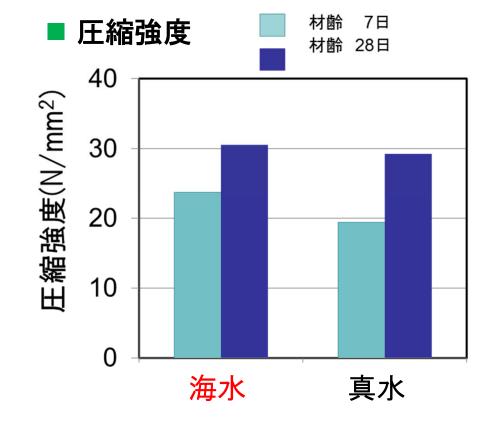
室内試験(ポストパックドコンクリート)


■外観

■コア表面

■圧縮強度

室内試験(コンクリート用骨材としの利用)


■ 粗骨材(RC40)

					試験結果		
配合	練混ぜ水	W/C (%)	W	スランプ (cm)	空気 量 (%)	ブリー ディング 率(%)	
1	海水	50.0	165	17.5	4.4	1.87	
2	真水	50.0	165	21.5	6.9	2.85	

■ スランプ

実証試験 (2013.2 相馬港)

東北地方整備局「東北港湾の災害復旧工事における技術の応募」 (平成24年度)

【実証実験】

震災コンクリートがらと海水練りコンクリートを使用した港湾構造物の築造技術

製造施設

■現地プラント (専用プラント設置)

■使用ミキサ

- 2軸強制練り

·容量:1.5m³

注入モルタルの配合

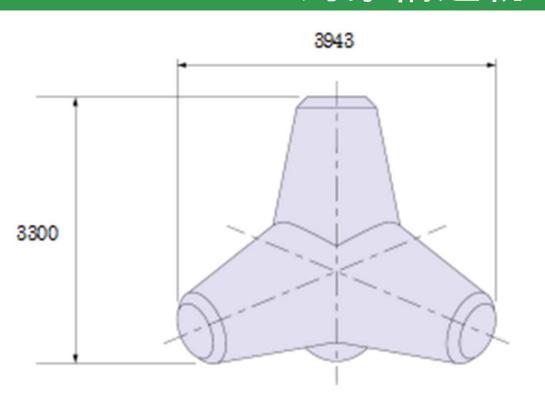
					単位量(kg/m³)				5年77年	
注入	練混ぜ	W/B	S/B		E	3		Al	P漏斗流 下時間	空気量
モルタル	水	(%)	(%)	W	セメント	膨張 材	砕砂	(g/m ³)	(秒)	(%)
プレパッ	海水	40.0		262	640	40	1110	40	58.3	10.0
クド	真水	40.0	1.7	263	618	40	1119	40	49.2	10.7
ポスト	海水	45.0	1.7	206	EOE	40	1000	40	33.0	9.0
パックド	真水	45.0		286	595	40	1080	40	31.4	9.7

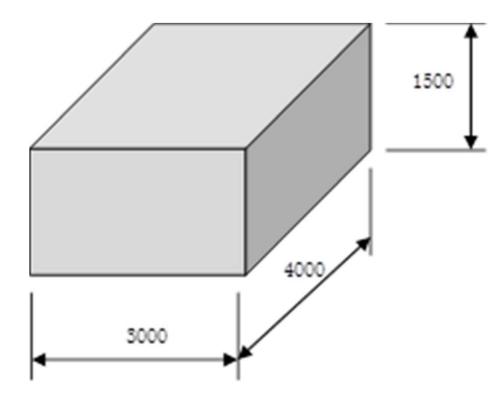
■ Pロート流下試験

項目	品質
Pロート流下時間	30~60秒
空気量	10±2%
膨張率	2~5%
ブリーディング率	3時間で3%以下

(比較用)コンクリート配合(クラッシャーラン使用)

設計基準	練混	W/B	i i	単位量(kg/m³)			スランプ	空気	
強度 (N/mm²)	ぜ水	(%)		W	С	S	G	(cm)	量 (%)
24	真水	54.7	46.4	175	320	886	944	11.0	5.6


粗骨材: RC40 (再生クラッシャーラン)


項目	試験値
寸 法	40mm以下 (5mm以下35%含有)
密度	2.22g/cm3
吸水率	12.4%

対象構造物:港湾用ブロック

消波ブロック(25t型)

根固めブロック(40t型)

	ブロックの種類		ブロックの種類		ブロックの種類		ブロックの種類		設計基準 強度(N/mm ²)	打設方法	がらの寸法 (粗骨材)	練混ぜ水
	消波 ロック	25t型 (H=3.3m)	18	プレパックド コンクリート	300~500mm	真水海水						
	根固	40t型 (H=1.5m)	18	ポストパックド コンクリート	300~500mm	真水海水						

プレパックド工法による消波ブロックの施工(相馬港)

コンクリートがら充てん状況

給熱養生

モルタル注入状況

型枠脱型

1m³に約0.5m³のがらを投入⇒約12ton/1基の処理が可能

ポストパックド工法による根固ブロックの施工(相馬港)

モルタル注入

コンクリートがら投入

給熱養生

型枠脱型

品質試験

†

80cm立方体ブロック

φ15×30cmの供試体の作製

直径150mmコア

がらとモルタルの界面の間隙はない

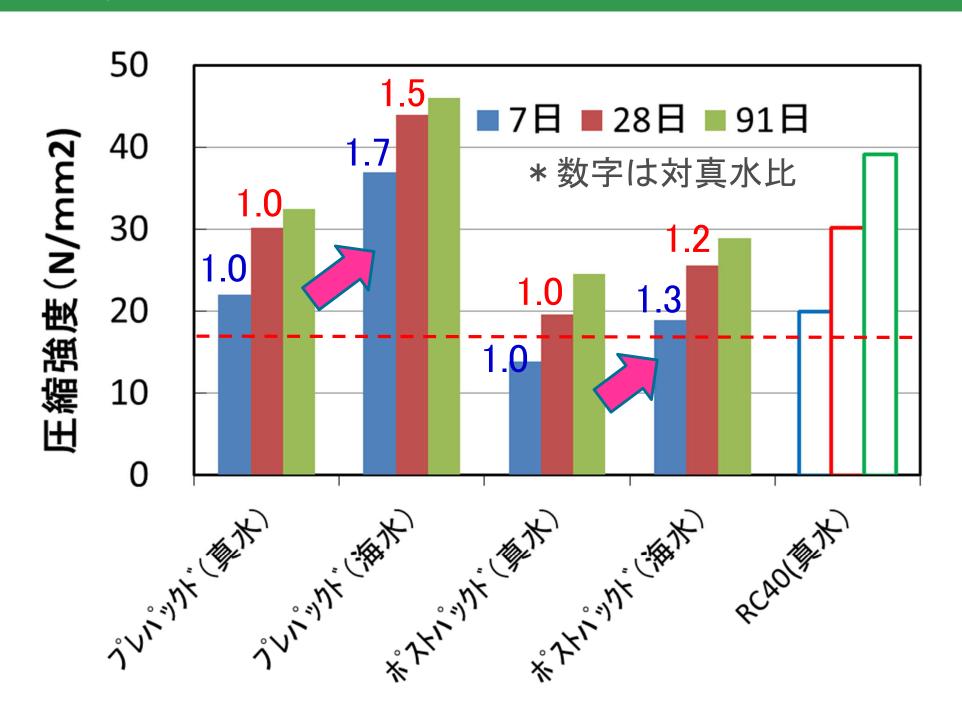
良好な充填性を確認

高流動注入モルタルの試験結果

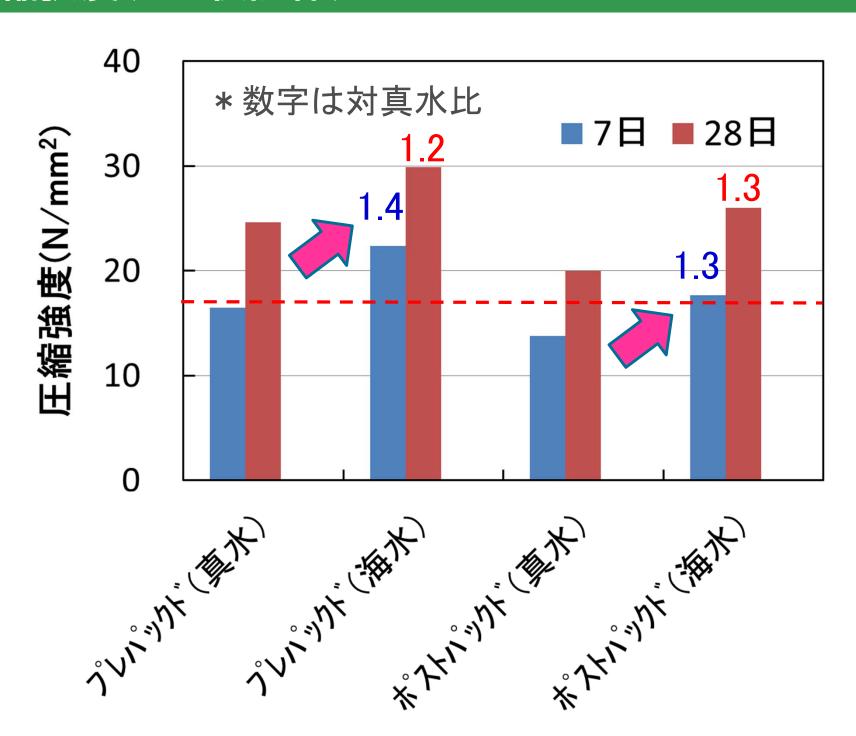


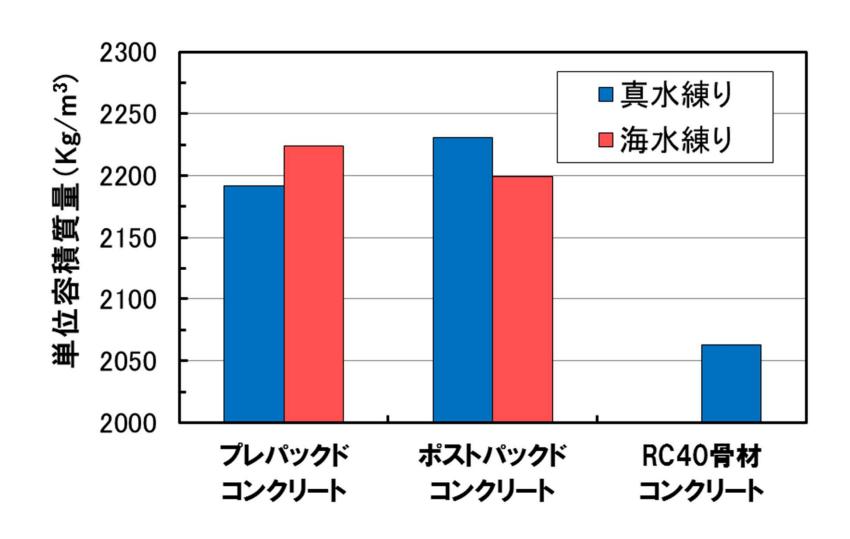
16 日	W/C P漏斗流化	P漏斗流化時	空気量	圧縮強度(N/mm2)		
項目	(%)	間(秒)	(%)	7日	28日	
真水練り	40	49.2	10.7	26.4 (1.0)	42.4 (1.0)	
海水練り		58.3	10.0	46.8 (1.7)	56.4 (1.3)	

初期強度(注入モルタル)


W/B:45%

早期強度増大⇒脱型時間の早期化が期待


圧縮強度(テストピース)


圧縮強度(コア供試体)

単位容積質量

ブロックの外観

消波ブロック

根固めブロック

まとめ

- 1. 寸法300~500mmのコンクリートがらを粗骨材として用い、 港湾用ブロックの製造が可能。
- 2. 充填モルタルの練混ぜ水として海水を使用することにより、 早期強度が増大し、脱型時期を短縮することが可能。 また、材齢28日において、港湾用ブロックとしての十分な 圧縮強度が得られる。
- 3. コンクリート1m³中に約0.5m³のコンクリートがらを利用でき、破砕したクラッシャーランを用いたコンクリートに比べて、より多くのコンクリートがらを使用でき、単位容積質量を大きくできる。