
A STUDY ON BISC (BUS INSTRUCTION SET COMPUTER) ARCHITECTURE AND
BISC-1

Student Number: 00M34567 Name: Makiko Ichirou SUZUKI Supervisor: Makiko TANAKA

BISC (BUS INSTRUCTION SET COMPUTER)アーキテクチャと
BISC–1プロセッサに関する研究

鈴木一郎

We propose a novel computer architecture named BISC (Bus Instruction Set Computer) of which in-
structions are essentially restricted only to data transfer between internal registers. This feature enables
for each unit in the computer to perform highly independently. Therefore, we can easily change or add
functions of the computer because we do not have to change the instruction set. We explain its details and
show its performance by experimental results.

1 Introduction
The architectures of microprocessors in ordinary use to-
day are the CISC, RISC, and VLIW versions [1]. The
working speeds of these architectures are being increased
by multi-stage pipelines, superscalar, branching estima-
tion, and instruction reordering. However, introducing
these functions makes the processors increasingly com-
plicated, so it is actually difficult to make additional
changes in processor functions according to needs. In
case of VLIW processors, although they are simpler
than CISC and RISC processors, it is still difficult since
instructions of VLIW processors depend on their func-
tions. Since in the field of signal processing or image
processing, functions of a processor have to be changed
for the purpose, such as JPEG or MPEG–1,2,4,7 or fil-
tering, an architecture by which functions of a processor
can be easily changed is needed.

In order to cope with this situation, Yamashita pro-
posed a new architecture called bus instruction set com-
puter (BISC) [4]. In this architecture, instructions are
essentially limited to data transfers between registers by
the internal bus in the processor. Then, the structure of
BISC processors is very simple, and units in the proces-
sor work highly independently. For example, instruc-
tions are fetched to buffers independently with decoding
and execution. Instruction decoding is only the decod-
ing of binary numbers. Execution is only data transfer
between registers.

Therefore, multi-stage pipelines are not needed. The
ALU starts its calculation when all data are transferred.
Instructions are not changed even when we make addi-
tional changes in processor functions, so it can be done
easily. Furthermore, since the time needed for execu-
tion of an instruction is very short, the processor can
be use its functions effectively. In order to demonstrate
BISC architecture we are designing a processor called
BISC-1, which has a doubled internal bus for an integer
calculation unit.

Lipovski [2] and Corporaal [3] proposed architec-
tures called SECP and TTAs, respectively, which es-
sentially limit instructions only to data transfers. How-
ever, their architectures have the following disadvan-
tages. The number of functions, including the num-
ber of ALU operations (‘add’, ‘sub’, etc.), is limited to
the number of registers. The conditions for conditional
branch are also restricted to several types. Since units
in the processors don’t work independently, multi-stage
pipelines are needed for effective execution and the time
for the execution of an instruction is longer. Since the
branch instruction is realized by the direct data transfer
to the program counter, it is difficult to judge conditions
in advance and do branching estimation.

In this paper, we explain the BISC architecture by
describing the detail of BISC-1. We show experiments
by using Dhrystone 2.1 and optimize the number of
buffers in BISC-1.

2 Overview of BISC-1
BISC-1 is a 32-bit integer processor, designed as a pro-
totype BISC processor with a doubled bus for two data
transfers per cycle.

2.1 Structure of BISC-1
The basic constitution of BISC-1 is shown in Figure 1.
BISC-1 mainly consists of the following components,
such as a doubled internal bus, a register file, mecha-
nisms for instruction fetch and decoding, and three func-
tion units.

• Bus · · · An instruction is performed by transfer-
ring data through the bus. The bus is doubled so
that it is capable of two data transfers per cycle.

• Register File · · · Register file consists of 64 reg-
isters connected to the bus. Registers are divided
into functional and general purpose registers; the

ALU

DCM
CU

BCU

B
 U

 S
 1

B
 U

 S
 2

IDB
IDB
IDB

BCB
BCB
BCB

I-cache D-cache

ICMCU

MDR
MAR
SDR
SAR

BAR

IDR

OCR
OIR1
OIR2
OOR
OFR

BBR

ALU Arithmetic Logic Unit
BAR Branch Address Register
BBR Branch Base Register
BCB Bus Control Buffer
BCU Branch Control Unit
BUS1 Bus 1
BUS2 Bus 2
D-cache Data cache
DCMCU Data Cache Memory Control Unit
I-cache Instruction cache
ICMCU Instruction Cache Memory Control Unit
IDB Immediate Data Buffer
IDR Immediate Data Register
MAR Memory Address Register
MDR Memory Data Register
OCR Operation Control Register
OFR Operation Flag Register
OIR Operation Input Register
OOR Operation Output Register
SAR Stack Address Register
SDR Stack Data Register

Figure 1: Basic constitution of BISC-1

Immediate Data

31
30

29 24 23 18 17 12 11 6 5 0

M I D0 S0 D1 S1 D2

31
30

29 24 23 18 17 12 11 6 5 0

M I S2 D3 S3 D4 S4

Figure 2: BISC-1 instruction format

former, connected to function unit, plays a spe-
cific role and the latter just holds data.

• Bus Control Buffer (BCB) · · · A BCB consists
a set of buffers to store data transfer instructions
and there are several BCBs in BISC-1. The active
BCB for bus control is chosen by BCU.

• Immediate Data Buffer (IDB) · · · An IDB con-
sists a set of buffers to store immediate data and
there are several IDBs. The active IDB for im-
mediate data is chosen by BCU as well as BCB.

• Instruction Cache Memory Control Unit (ICMCU)
· · · ICMCU transports instructions from the in-
struction cache to BCB or immediate data to IDB.
It contains the program counter.

• Branch Control Unit (BCU) · · · BCU is a func-
tion unit to control the flow of BISC-1. BCU also
controls BCB and IDB.

• Data Cache Memory Control Unit (DCMCU)
· · · DCMCU is a function unit to control data cache
memory access.

• Arithmetic Logic Unit (ALU) · · · ALU is a func-
tion unit to perform 28 operations including 13
operations to judge conditions for control flow.

2.2 Instruction format of BISC-1
Instructions of BISC-1 are restricted to data transfer be-
tween registers through the internal bus essentially. So,
while traditional CISC or RISC architectures specify
operations in the operation field of an instruction word,
BISC needs no operation field because it has only one
kind of instruction. It needs to specify only two reg-
isters of source and destination. Instruction format of
BISC-1 is shown in Fig. 2.

Bit 31 is called Mark Bit (M-bit). M-bit indicates
a block separation regarding control flow. When M-bit
is ‘0’, BISC-1 continues instruction fetch. When M-bit
is ‘1’, it is the last instruction word and the following
instruction fetch depends on the state of internal regis-
ters. Bit 30, called Immediate-Data Bit (I-bit), indicates
whether the next word in I-cache is an immediate data.

When I-bit is ‘0’, the next word is an instruction word,
otherwise an immediate data. The other bits specify
the source/destination registers for data transfers. Two
words specify five sets of source/destination register.
Bit 29–24 indicates the register code number of desti-
nation (D0) and Bit 23–18 indicates one of source (S0).
Bit 17–6 (D1, S1) is also written the source/receive reg-
ister number of the next instruction. Further instruction
is written on Bit 5–0 (D2) and Bit 29–24 (S2) of the
next word (if I-bit is ‘1’, the word after next).

2.3 Basic mechanism of BISC-1
The program is stored in I-cache. ICMCU fetches words
from I-cache and transfers instructions to BCB or an im-
mediate data to IDB. The address for I-cache access is
specified by the program counter in ICMCU. Both BCB
and IDB to receive instructions and data, respectively,
are chosen by BCU.

One of BCB, which is chosen by BCU, receives
12-bit data to specify registers for data transfer from
ICMCU. At the same time, one of BCB, which is cho-
sen by BCU, sends 12-bit data as long as BCB has in-
structions.

In order to enhance the performance, BISC-1 has a
doubled bus. Two data transfers can be performed with
the doubled bus.

Each bus receives a data transfer instruction, which
consists of a pair of 6-bit register code numbers, from
BCB. Suppose they are n and m. Then, the data in the
register n is transferred to the register m through a bus.
The preceding instruction uses BUS1 and the following
instruction uses BUS2. Only if the data in the register
m can be read and the register n can be written on, then
the data in the register m is transferred to the register n.
After that, each bus receives the next instruction. Oth-
erwise, the instructions are not executed in this cycle.
A wired logic around a set of registers for a function
unit decides locally whether read/write data is possible
or not.

IDB is connected to IDR. When the data of IDR are
transferred, the next data of IDB are sent to IDR at the
same time, and one of IDB, which is chosen by BCU,
can receive an immediate data from ICMCU.

3 Function and specification of BISC-
1

3.1 Arithmetic logic operation
We show how arithmetic logic operations are performed.
First, the data indispensable for the operation are trans-
ferred to OCR, OIR1 and OIR2 (or transferred to OCR
and OIR1, or transferred to OCR, according to the op-
eration). The data for specifying operations is stored
on OCR and operands are stored on OIR1 and OIR2.
When all the needed data are transferred to OCR or

BCU
inst

inst0 inst1 inst2 inst3 inst4 inst5

31 30 29 25 24 20 19 15 14 10 9 5 4 0

Figure 3: OCR formats

OIRs, ALU starts the operation and stores the result to
OOR and the flags to OFR. In some operations, the re-
sult and flags are not stored. If OOR is ‘no receive’
from ALU, they are not stored and ALU doesn’t exe-
cute the next operation until OOR is ‘receivable’. After
the result produced by ALU is stored to OOR, the next
result can’t be stored to OOR until the former result is
transferred through BUSes. After the data in OOR is
transferred, the instruction which transfers the data in
OOR can’t be performed until the next result produced
by ALU is stored to OOR. OFR holds 9 flags including
‘carry’, ‘zero’, ‘overflow’, etc.

ALU in BISC-1 supports 28 operations including 15
arithmetic logic operations (‘add’, ‘sub’, etc.) and 13
condition judgment operations (‘if zero’, ‘if not zero’,
‘if plus or zero’, etc.). Since a 5-bit field is wide enough
to specify an operation, the word in OCR consists of
six 5-bit operation specifiers, as shown in Fig. 3. ALU
executes the operation specified by 5 bits in order of
height from bit29 on OCR. The higher 2-bit field are
used for control flow, as described in Section 3.3.

When the operation is a condition judgment opera-
tion, the result of judgment by using the content of OFR
is transfered to BCU. OFR have to be set by the previ-
ous arithmetic operation.

3.2 Memory access
MDR and MAR are used to load/store memory. To load
from memory, the address for the data is transferred to
MAR. Then, the data at the address is sent to MDR.
To store on memory, data is transferred to MDR at first.
Next, the address is transferred to MAR. In case of load,
MDR becomes ‘no read’ when data is written on MAR,
and ‘readable’ when data from memory is written on it.
In case of store, MDR becomes ‘no write’ when data is
written on MDR, and MAR becomes ‘no write’ when
data is written on MAR. When storing data on memory
is finished, MAR and MDR become ‘writable’. SDR
and SAR are used to push/pop on the stack.

3.3 Control flow
The control flow function ‘no operation’ or ‘uncondi-
tional jump’ or ‘conditional jump’ or ‘halt’ is specified
by the higher 2-bit of OCR. The control flow specifier
is transferred to OCR with ALU function specifier and
a target address for jump is transferred to BAR. On one
hand, in case of unconditional jump, the address in BAR
is certainly written on the Program Counter (PC) and for
call and return the value in PC is written on BAR at the

Table 1: Cycles and CPI for various number of buffers
in BCB (with 2 buffers in IDB).

of buffers 16 8 4 3
cycles 3345 3346 3347 3370
CPI 0.8119 0.8121 0.8124 0.8180

Table 2: Cycles, usage, and CPI for BISC-1 with 1 and
2 bus (with 4 buffers in BCB, 2 buffers in IDB).

multiplex degree of the bus 1 2
cycles 4638 3347

usage BUS1 88.83 79.53
(%) BUS2 – 43.56

CPI 1.1257 0.8124

same time. On the other hand, in case of conditional
jump, according to the result of a conditions judgment
operation from ALU, the address in BAR is written on
PC or not.

As described in Section 2.2. M-bit indicates a point
where control flow function should be driven. Imme-
diately after ICMCU fetches the word whose M-bit is
evaluated ‘1’, control flow is done. However, ‘no oper-
ation’ causes nothing and ‘halt’ halts the processor after
the last instruction is finished. It is independent from
data transfers between registers.

4 Experimental Results
We examined the performance of BISC-1 with 16, 8, 4,
and 3 buffers in BCB, and 8, 4, 3, and 2 buffers in IDB.
In the first place, we investigated the relation between
performance and the number of IDB. As the results of
the examinations, it turned out that the number of cy-
cles for Dhrystone 2.1 is constant with the number the
buffers in IDB. Therefore, it can be concluded that two
buffers in IDB is enough. In the second place, we var-
ied the number of buffers in BCB with two buffers in
IDB. The results are shown in Table 1. Cycles in Table
1 mean the number of clocks cycles needed for a main
loop in Dhrystone 2.1. CPI is almost constant between 4
and 16 buffers, and CPI with 3 buffers is worse. There-
fore, the optimal number of buffers in BCB is four. As
a result, the optimal number of buffers in BCB is four
and IDB is two, when using this memory system.

The multiplex degree of the bus means the number
of executable instructions in a cycle. Therefore, the per-
formance of BISC-1 can be improved by increasing the
multiplex degree of the internal bus. So, we compare
the doubled bus version with the single bus version. The
result is given in Table2. CPI for the doubled bus is
smaller than the single bus, so the double bus has an
advantage.

Although the usage of BUS1 can be raised by opti-

mization of the instruction stream, the usage of BUS2
is not high. So, it is necessary to use BUS2 more effec-
tively.

It is not necessary to implement so many buffers in
BCB and IDB. The reason would be that BCB and IDB
have only to hold instructions and an immediate data for
the next cycle when using this memory system.

From observation of the process, it was proved that
unconditional jump can be performed with little delay.
The reason is that the specifier of unconditional jump
and the target address is set when data are transferred to
OCR and BAR, and instructions after the branch can be
fetched previously.

ALU is almost busy. In order to solve this problem,
the operation unit has to be added.

5 Conclusions
In this paper we discussed BISC architecture and the
structure, specifications, and features of BISC-1 designed
as a prototype BISC processor. We also showed the ex-
perimental results of BISC-1 and optimized the multi-
plex degree of the internal bus and the number of buffers
in BCB and IDB.

Performance could be improved, by increasing the
number of buses and implementing a floating-point unit,
a multiplication unit, and a division unit, according to
the needs of an application domain. And in order to
exploit the performance of BISC-1, we are developing
the high performance compiler for BISC-1. We are also
planning to implement efficient ‘interrupt’ of BISC pro-
cessors.

References
[1] John L. Hennessy and David A. Patterson,

“Computer Organization & Design:The Hard-
ware/Software Interface,” Morgan Kaufmann Pub-
lishers, San Francisco, 1994.

[2] G. Jack Lipovski, “The architecture of a simple,
effective control processor,” In Second Euromi-
cro Symposium on Microprocessing and Micropro-
gramming, pp.7-18, Oct. 1976.

[3] Henk Corporaal and Paul van der Arend,
“Move32int, a sea of gates realization of a
high performance transport triggered architecture,”
Microprocessing and Microprogramming, vol. 38,
pp.53-60, Sept. 1993.

[4] Yukihiko Yamashita, “A New Architecture of
Multi-Purpose Microprocessor –Bus Instruction Set
Computer (BISC)–,” Technical report of IEICE, no.
CPSY 96-70, pp.9-14, Oct. 1996. (in Japanese)

