タイ王国産パーム核殻活性炭を用いた吸着による 小規模パーム油工場排水中のフェノールおよびリグニンの除去

学籍番号:23M51953 氏名:高靖雅 指導教員:江頭竜一、鎺広顕

1. 緒言

パーム油は、世界中で食用油や加工食品、化粧品、 さらにはバイオ燃料として利用される重要な資源で ある。その生産量は年々増加しており、安価で汎用 性も高いことから需要は拡大し続けている。しかし、 その生産過程においては大量の水やエネルギーを要 し、副産物や廃棄物が多く発生する。

アブラヤシの果実からパーム油を抽出する際、副 産物として大量の廃棄物が発生することとパーム油 工場排水 (POME) による水質汚染が深刻な問題とな っている。特に、小規模のパーム油工場の場合にお いては、大規模な工場に比べて技術力や設備投資の 面で制約が多く、その結果、廃棄物管理や環境保護 のための対応が十分に行えず、地域の環境問題を引 き起こしている。POME は毒性と難分解性物質(フェ ノールとリグニン)を含むが、小規模工場では効果的 な処理設備が整備されていないことが多く、未処理 のまま排出されることがある[2]。このような排水は 水質汚染を引き起こし、周辺の住民の健康や生態系 に悪影響を及ぼしている。

また、小規模工場では廃棄物を有効活用するため の研究開発も限られており、廃棄物をそのまま捨て る場合が多い。この状況は、環境負荷を増大させる だけでなく、廃棄物の潜在的な価値を損失すること にもつながっている。このような背景から、持続可 能な廃棄物処理技術や循環型利用モデルの開発が急 務となっている。

これまでの研究では、パーム油産業の副産物であ るパーム核殻(PKS)をリン酸による化学賦活法で 活性化し、得られた活性炭を用いてフェノール[3]お よびリグニン[4]を含む POME の処理を行ってきた。 しかし、化学賦活法では薬品の使用が必要であり、 処理プロセスが複雑という課題があった。そこで、 本研究では、化学薬品を使用せず、水蒸気を用い、 より簡便な水蒸気賦活法を使用した。

従って、本研究においては、タイ王国のパーム油 製造プロセスにおいて、パーム核殻から製造した活 性炭を用いた吸着による小規模パーム油工場排水中 のフェノールおよびリグニンを除去することとした。 まず、水蒸気雰囲気下でパーム核殻を熱処理して

パーム核殻活性炭 (PKSAC)を作成した。

ついで、作成した PKSAC を用いて、フェノール およびリグニンを1成分ごとまたは両成分含むモデ ル排水の回分吸着を行った。

さらに、これらの熱処理における活性炭の収率, 吸着量などを用いた物質収支関係に基づいて、本除 去法の実行可能性について検討した。 2. 実験

2.1. パーム核殻活性炭の作成とキャラクタリゼー ションン

原料のパーム核殻 (PKS) は、タイのクラビ県にある民間企業から入手した。

まず、前処理として PKS を粉砕し、洗浄・乾燥を 行った。その後、熱処理して PKSAC を作製した。 373 K のイオン交換水を用いて、作成した PKSAC を洗浄した。実験条件を Table 1 に示す。凝縮された 液体副産物や揮発性成分を含むオフガスの生成量に ついての収率と性状も評価を行った。さらに、作成 条件として熱処理温度を変化させ、その影響を調べ た。

熱処理装置の概略を Fig.1[3,4]に示す。この装置 の主な構成は、電気加熱炉に水平に挿入された円筒 状のステンレス管を用いた。ステンレス皿(3)に試 料を載せ、反応器の中心に置いた。熱電対(5)をス テンレス皿の中心の上方に位置させた。液体生成物 は水浴(9)で凝縮させ液体として回収した。

Fig.1 Schematic diagram of thermal treatment apparatus (1) tubular reactor; (2) electric tubular furnace; (3) sample holder; (4) feed;

(5) NiCr-Constantan thermocouple; (6) valves; (7) condensers; (8) liquid product trap; (9) iced bath; F.I. flow indicator; T.I. temperature indicator^[3,4]

Feed	PKS
Mass of feed, S ₀ [kg]	1.0×10^{-2}
Atmospheric gas	N_2 , H_2O
Flow rate of N ₂ $[m^3 h^{-1}]$	9.0×10 ⁻³
Flow rate of H_2O [m ³ h ⁻¹]	4.0×10^{-3}
Temperature, $T[K]$	873-1273
Time, t_t [h]	1

PKSAC の比表面積、全細孔容積、細孔分布を測定 するために、窒素ガス吸着法を用いた。窒素吸着装 置 BELSORP MINI X を使用し、PKSAC 表面の特性 を詳細に評価した。比表面積 S_{BET} は、Brunauer-Emmett-Teller (BET) 法を用いて算出した。細孔分布 の解析には、Barrett-Joyner-Halenda 法 (BJH 法) を適用した。

2.2. モデル排水の回分吸着

吸着剤として、市販活性炭(CAC)と 2.1 で作成した PKSAC を用いた。

フェノール溶液、リグニン溶液、またはその混合溶 液を調製し、モデル POME 溶液を準備した。モデル POME 溶液に PKSAC を、これを恒温振とう水槽 (T-N22S、300K)を使用して、所定の時間振とうさせた。 その後、吸着剤と溶液を濾別し、液相を分析した。 UV-Vis 分光光度計(UV-1280)を用いてフェノール とリグニンの濃度を決定した。

Table 2 Principal conditions for adsorption

Feed	Aqueous solution of
	lignin and/or phenol
$T_{\rm t}$ [K]	873-1273
$C_{\text{Lg},0} \text{ [kmol m}^{-3}\text{]}$	0.0001-0.03
$C_{\mathrm{Ph},0} [\mathrm{kmol} \; \mathrm{m}^{-3}]$	0.002-0.17
Adsorbent	PKSAC / CAC
S_0/L_0 [kg m ⁻³]	4
$t_{\rm b}[{\rm h}]$	24-120
T_{aq} [K]	300

実験条件を Table 2 に示す。2 成分溶液の場合、フ ェノールとリグニンの濃度[kmol m⁻³]の比率が 6.62 に固定し、異なる濃度の溶液を用いて、吸着実験を 行った。

3. 結果と考察

3.1. パーム核殻活性炭の作成とキャラクタリゼー ションン

PKSAC の収率 *Y*_{PKSAC}、凝縮液の収率 *Y*_L、オフガスの収率 *Y*_{OG}は、それぞれ式(1), (2), (3)で定義した。

$$Y_{\rm PKSAC} = \frac{F_1}{F_0} \tag{1}$$

$$Y_{\rm L} = \frac{L_1}{F_0} \tag{2}$$

 $Y_{\rm OG} = 1 - (Y_{\rm L} + Y_{\rm PKSAC}) \tag{3}$

PKSAC の収率の結果を Table 5 にまとめた。熱処 理温度の上昇に伴い PKSAC の収率が大きく減少し た。また、熱処理温度が高くなるにつれて、PKSAC、 凝縮液の収率は減少し、オフガスの収率は増加した。 雰囲気中水蒸気の有無は PKSAC の収率に対して大 きいな影響はなかった。

既報の化学賦活を施した PKS(リン酸を用いた活性化)の結果[3,4]と比較した結果、化学賦活された PKSを原料として作成された PKSACの収率は水蒸 気賦活のものより高かった。

Table 4 Conditions for creation of PKSAC

	C_{p}	atmosphere	$T_{\rm t}$
	[kmol m ⁻³]	[-]	[K]
00600	0	N ₂ +H ₂ O	873
00800	0	N ₂ +H ₂ O	1073
001K	0	N ₂ +H ₂ O	1273
01600 ^[3,4]	0	N_2	873
41600 ^[3,4]	4	N_2	873
41800 ^[3,4]	4	N_2	1073
81600 ^[3,4]	8	N_2	873
81800 ^[3,4]	8	N_2	1073

Table 5 Physical properties of PKSACs			
	$Y_{\rm PKSAC}$	$S_{\rm BET}$	$V_{\rm p} \times 10^4$
	[-]	$[m^2 kg^{-1}]$	$[m^3 kg^{-1}]$
00600	0.308	0.371	1.67
00800	0.248	0.407	2.31
001K	0.075	0.578	5.09
01600 ^[3,4]	0.310	0.235	1.56
41600 ^[3,4]	0.374	0.243	1.70
81600 ^[3,4]	0.274	0.889	6.15

Table 5 には、本研究で得られた PKSAC 及び既報 の化学賦活で作成した PKSAC の収率、比表面積、 全細孔容積の結果をまとめた。PKSAC の比表面積お よび全細孔容積は、熱処理温度の上昇とともに増加 した。

賦活しない場合と比較して、水蒸気賦活で作成した PKSAC が BET 比表面積も全細孔容積も高かった。 また、化学賦活の場合、リン酸濃度の増加とともに、 比表面積も全細孔容積も大きく増加した。

水蒸気賦活で作成した PKSAC はリン酸濃度 4 kmol m⁻³の場合と比べ、比表面積が大きい、全細孔容積が ほぼ一致であった。一方、水蒸気賦活で作成した PKSAC はリン酸濃度 8 kmol m⁻³の場合と比べ、比表 面積も全細孔容積も低かった。そのため、熱処理温 度が 873Kの場合、水蒸気賦活の PKSAC の吸着性能 がリン酸濃度 4 kmol m⁻³の場合より高い、リン酸濃 度 8 kmol m⁻³の場合より低いことも考えられる。

3.2. モデル排水の平衡吸着 3.2.1 結果の整理法

吸着実験前後の物質収支関係は
$$L_0C_{i,0} = LC_i + S_0q_i$$
 (4)

で表わされる。 化合物 i の除去率 *R*_iは

$$R_{i} = \frac{L_{0}C_{i,0} - LC_{i}}{L_{0}C_{i,0}}$$
(5)

で定義した。

吸着平衡関係を Langmuir の吸着等温式、

$$q_{i} = \frac{q_{i}^{+} K_{L,i} C_{i}}{1 + \sum K_{L,i} C_{i}}$$
(6)

で整理した。

3.2.2 平衡到達に要する時間

本研究で作成した全てのPKSACは時間の経過とと もに、フェノールとリグニンの濃度が減少した。

Table 6 には、各熱処理温度における作成した PKSAC のフェノールとリグニンの単一と 2 成分溶 液の吸着の平衡時間の結果をまとめた。

熱処理温度の増加とともに、平衡時間が大きく変化 しなかった。さらに、2成分溶液の吸着が単一成分 溶液に比べて、平衡に到達する時間が長かった。

Table 6 Summary of equilibrium time and removal rate

$T_{\rm t}$	t_{Ph}	$t_{ m Lg}$	tb
[K]	[h]	[h]	[h]
873	48	48	-
1073	72	48	120
1273	24	72	-

3.2.3 除去率

Fig.2は、単一成分溶液および2成分溶液における 除去率と初期濃度の関係を示す。

まず、熱処理温度に関係なく、全ての PKSAC においては、初期濃度が増加すると、フェノールとリグ ニン除去率が減少した。また、同じ初期濃度におい ては、熱処理温度が増加すると、フェノールの除去 率とリグニンの除去率も増加した。熱処理温度が高 くなると、PKSAC の比表面積と全細孔体積が増加す ることが理由の一つであると考えられる。さらに、 単一成分溶液と比較して、2 成分溶液ではフェノー ル除去率が初期濃度の低い時低い、初期濃度の高い 時高かった。単一成分溶液と比較して、2 成分溶液 ではリグニン除去率が低かった。フェノールに比較 してリグニンの除去率が全体的に低かった。

Fig. 2 Relationship between removal rate and initial concentration; (a) phenol; (b) lignin

3.2.4 吸着量

Fig. 3 Adsorption isotherms; (a) phenol; (b) lignin

Fig. 3 にフェノールとリグニンの吸着等温線を示 す。各熱処理温度の PKSAC に対するフェノールと リグニン吸着は、単一成分溶液の場合、すべて Langmuir モデルに従った。吸着量は熱処理温度が高 いほど増加する傾向が見られた。

フェノールの場合、平衡濃度の低い範囲では、2 成 分の場合の方が吸着量が低く、濃度が高い範囲では 吸着量が高かった。リグニンの場合では、2 成分の 場合の方が吸着量が低かった。

Table 7 Summary of $q_{\rm Ph}^*$ and $q_{\rm Lg}^*$

	q _{₽h} * [kmol kg-AC⁻¹]	q _{Lg} * [kmol kg-AC⁻¹]
00600	0.0014	0.00188
00800	0.0018	0.00364
001K	0.0025	0.00430
41400 ^[3,4]	0.0049	0.00029
41800 ^[3,4]	0.0025	-
81400 ^[3,4]	0.0059	0.00148
CAC	0.0027	0.00035
01600 ^[3,4]	0.0022	0.00005

Table 7 には単一成分溶液の qPh*と qLg*の結果をま とめた。フェノールの吸着において、化学賦活 PKSAC の飽和吸着量は水蒸気賦活 PKSAC よりも高 かった。一方、リグニンの吸着においては、化学賦 活 PKSAC の飽和吸着量が水蒸気賦活 PKSAC より も低いことが確認された。この違いは、フェノール とリグニンの分子量の差が大きいこと、および PKSAC 表面における吸着サイトが異なるためと考 えられる。

また、単位質量あたりの PKS を用いて作成した PKSAC によるフェノールおよびリグニンの吸着量 は、1073 K で最も高かった。

3.3 パーム油工場における排水処理プロセス

Fig.4 に、タイのパーム油製造業に応じて、提案したプロセスフローを示す。

Fig.4 Process Flow [3,4]

得られた PKSAC の量は、プロセスで POME 中のす べてのフェノールとリグニンを除去するために必要 な量よりも明らかに多かった。したがって、PKSAC の量はPOME 中のフェノールとリグニン化合物を除 去するのに十分であり、PKSAC を用いた POME の 処理は実現可能な方法であると考えられた。

Fig. 5 Relationship between adsorption and compounds in POME

4. 結論

水蒸気雰囲気下で異なる熱処理温度により PKSACが作成できた。

作成した PKSAC を用いた回分吸着実験では、フ ェノールおよびリグニンをそれぞれ単一成分として、 または両成分を含むモデル排水から除去できること が確認された。

また、物質収支計算に基づき、本手法の実行可能性 が確認された。

これらの結果から、PKSAC を用いた排水処理は、

タイのパーム油工場プロセスに有望な適用法である ことが提案した。

使用記号

- *C*_p 化学賦活のリン酸濃度
- C_{b,i,0} 2成分溶液で化合物iの初期濃度
- *C*_i 平衡における化合物 i の濃度
- *C*_{i,0} 化合物 i の初期濃度
- *F*₀ 原料 PKS の質量
- *F*₁ 熱処理で得られた PKSAC の質量
- *K*_{L,i} Langmuir 平衡定数
- L 平衡における供給水溶液の質量
- Lo 初期における供給水溶液の質量
- L₁ 熱処理で得られた凝縮液の質量
- *q*_i PKSAC 上の化合物 i の平衡吸着量
- *q*_i^{*} 化合物 i の飽和吸着量
- R_{b,i} 2成分溶液で化合物 i の除去率
- *R*_i 化合物 i の除去率
- S₀ 初期における吸着剤の質量
- SBET BET 比表面積
- T_{aq} 吸着温度
- t_i 化合物 i 吸着の平衡時間
- T_t 熱処理温度
- Vp 全細孔容積

参考文献

- Mohammed, R.R.; Chong, M.F. Treatment and decolorization of biologically treated Palm Oil Mill Effluent (POME) using banana peel as novel biosorbent. J. Environ. Manag. 2014, 132, 237–249.
- [2] Canales Flores, R. A., F. Prieto and E. M. Otazo, "Physico-Chemical Characterization of Agricultural Residues as Precursors for Activated Carbon Preparation Short Title: Precursors for activated carbon preparation," December, 2017
- [3] Boontham, W.; Habaki, H.; Egashira, R. Removal of phenol from oil mill effluent using activated carbon prepared from Kernel Shell in Thailand's Palm Industry. J. Chem. Eng. Jpn. 2020, 53, 682–688.
- [4] Boontham, W.; Habaki, H.; Egashira, R. Removal of Lignin by Adsorption Using Palm Kernel Shell Activated Carbon for Decolorization of Effluent in Thailand's Palm Industry. J. Chem. Eng. Jpn. 2022, 55, 4, 181–187.