コールタール吸収油留分に含まれる含窒素複素環式化合物の抽出分離

95-2089-9

江頭研究室

永井政澄

1. 緒言

コールタール中には農医薬品の出発原料となるインドール(1) キノリン(Q)、イソキノリン(IQ)などの有用な含窒素複素環式化合 物(以下含窒素成分)が含まれている。これらは、コールタールの 中間留分である吸収油(沸点 483~559 K)から分離、精製されてい る 1)。しかしながら、これらの分離、精製工程は極めて複雑であり 2)、より効率のよい分離法が望まれている。そこで、本研究では抽 出法による吸収油中の含窒素成分の分離2)について検討した。

2. 実験

実験条件を Table 1 に示す。吸収油を原料とし、溶媒として、メ タノール(M)-水(W)系 ²⁾およびスルホラン(S)-W 系のものを用いた。 原料および溶媒を蓋付きフラスコに仕込み振とう恒温槽で所定時 間(t)接触させた後、分液ロートにより分相した。分析にはガスク 口(FID)およびカールフィッシャー水分計を用いた。これらにより、 含窒素成分として I、Q、IQ、芳香族炭化水素成分(分離の対照)と して 2-メチルナフタレン(MN)および溶媒成分について同定し組成 を決定した。

3. 結果と考察

Figure 1 に原料吸収油のガスクロマトグラムの一例を示す。 成分 i の収率 Yi、分配係数 mi および MN に対する分離の選択率 im を、それぞれ

 $Y_i = Ey_i/(R_0x_{0,i})$ (1), $m_i = y_i/x_i$ (2), $_{iMN}=m_i/m_{MN}$ (3) のように定義した。

いずれの溶媒の場合においても、 $y_{0,w}=0$ においては、原料吸収油 と溶媒は完全に溶解し合い抽出操作は不能であった。

M-W 系溶媒の場合において t=24h 程度で液液平衡に至ることを 確認した。そこで確実に平衡に至らせるために、以後 t=48 h にお いて検討した。

Table 2 に結果の一例を示す。MN と比較し、含窒素成分の Yi、mi は大きく、すなわち im/>1 であり、いずれの溶媒の場合にも含窒素 成分が選択的に抽出された。S-W 系溶媒の場合に比較して、M-W 系 溶媒の場合における含窒素成分の Y_i 、 m_i 、iMN は大きかった。この 傾向は特に I について顕著であった。またいずれの溶媒の場合に おいても抽残相中に移動した ₩ は無視できる程度であった。これ らより本研究の条件の範囲においては S-W 系溶媒に比較して M-W 系溶媒の方が優れていた。以下では M-W 系溶媒の場合を中心に述

 $y_{0,\text{W}}$ による Y_i の影響、 y_{W} による m_i および $_{i,\text{IM}}$ の影響をそれぞれ Figs.2~4 に示す。y_{0.W}が増加すると Y_i は減少した。y_Wの増加とと もにmiは減少し、 im は増加した。

 E_0/R_0 による Y_i 、 m_i および iMN の影響について Figs.5~7 に示す。 E_0/R_0 の増加にともない E/R_0 が増加し、これを反映して Y_i は増加し た。本研究の条件の範囲においては、E₀/R₀ すなわち平衡時の組成 によらず、mi および im はほぼ一定であった。

このように操作条件を変化させた結果、含窒素成分全体(I、Q お よび IQ)で最大 Y_{NH}=0.61、m_{NH}=0.36、 _{NH MN}=152 と高い値を示した。

Figs.2~7 には S-W 系溶媒の場合の結果もあわせて示す。他の条 件においても、前述の M-W 系溶媒と S-W 系溶媒の比較の結果 (Table 2)とほぼ同様の傾向であった。

上記の M-W 系溶媒を用いた場合における m,の結果を用いて向流 多段抽出計算を行った。向流多段抽出操作の概要を Fig.8 に示す。 物質収支式、平衡関係式等(省略)を EQUATRAN-M により解いた。な お、簡単のため吸収油中の同定しなかった成分(I、Q、IQ および MN 以外の成分)については、mi=0 と仮定した。結果の一例を Table 3 に示す。向流多段で操作することにより高い収率、選択率 となり、含窒素成分全体(I、Q および IQ)として、質量分率 0.85 程度のものが収率 0.75 程度で得られる結果となった。

4. 結言

抽出法により吸収油中の含窒素成分が高濃度分率、高収率で分 離できることを示した。

5. 謝辞

吸収油はアドケムコ(株)より提供されたものである。

参考文献

- 1) 化学工学協会編; 最近の化学工学 38「石炭化学工学」、pp.188~ 198、化学工業社、東京(1986)
- 2)請川ら;石油学会誌、33、250 (1990)

E=mass of extract [g] \ R=mass of raffinate [-] \ t=time [h] \ x=mass fraction in raffinate [-] , y=mass fraction in extract [-], y'=mass fraction in extract without solvent [-] Subscripts

0=at initial 、 i=component i, NH=Indole,Quinoline and Isoquinoline

Table 1 宝験条件

IUDIO	. ~	
原料		吸収油
溶媒		M-W 系
		S-W 系
y _{o,w}	[-]	0~0.8
E_0/R_0	[-]	0.5~8
t	[h]	1 ~ 72
温度	[K]	303

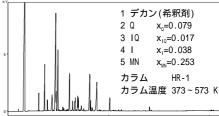
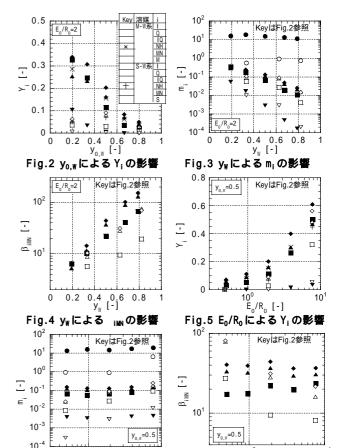



Fig.1 吸収油のガスクロマトグラム

Table 2 実験結果の一例 (y_{0,W}=0.5、E₀/R₀=2)

	溶媒	Sol	I	Q	IQ	MN
Yi	M-W 系		0.1157	0.1631	0.2036	0.0057
	S-W 系		0.0295	0.0826	0.0910	0.0032
iMN	M-W 系		22.2876	36.7971	44.0597	
	S-W 系		9.4756	28.0160	31.1676	
m,	M-W 系	14.9679	0.0659	0.1087	0.1302	0.0030
	S-W 系	0.9075	0.0277	0.0818	0.0910	0.0029

10⁰ E₀/R₀ [-] 10 100 E_n/R_n [-] Fig.6 E₀/R₀による m_iの影響 Fig.7 E₀/R₀による imnの影響

Fig.8 向流多段抽出操作の概要

10¹

Table3 向流多段抽出の計算条件と結果

計算条件 段数 5 段、y_{0,||}=0.333、E₀/R₆=4 (原料組成はFig.1参照)

y'_i:溶媒抜き濃度 y'_i=y_i/(1-y_M-y_W)

	Mass	M	W	1	Q	IQ	MN
R ₁ X _{1.1}	0.9210	0.0442	0.0000	0.0124	0.0201	0.0027	0.2556
E ₅ y _{5,i}	4.0789	0.6438	0.3268	0.0066	0.0149	0.0037	0.0041
Yi	• • • • • • • • • • • • • • • • • • • •			0.7040	0.7670	0.8598	0.0653
iMN				33.8080	46.7818	87.1642	
y' _i				0.2257	0.5071	0.1271	0.1382